| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oddinmgm.e |
|- O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) } |
| 2 |
|
halfnz |
|- -. ( 1 / 2 ) e. ZZ |
| 3 |
|
eleq1 |
|- ( ( 1 / 2 ) = x -> ( ( 1 / 2 ) e. ZZ <-> x e. ZZ ) ) |
| 4 |
2 3
|
mtbii |
|- ( ( 1 / 2 ) = x -> -. x e. ZZ ) |
| 5 |
4
|
con2i |
|- ( x e. ZZ -> -. ( 1 / 2 ) = x ) |
| 6 |
|
1cnd |
|- ( x e. ZZ -> 1 e. CC ) |
| 7 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
| 8 |
|
2cnd |
|- ( x e. ZZ -> 2 e. CC ) |
| 9 |
|
2ne0 |
|- 2 =/= 0 |
| 10 |
9
|
a1i |
|- ( x e. ZZ -> 2 =/= 0 ) |
| 11 |
6 7 8 10
|
divmul2d |
|- ( x e. ZZ -> ( ( 1 / 2 ) = x <-> 1 = ( 2 x. x ) ) ) |
| 12 |
5 11
|
mtbid |
|- ( x e. ZZ -> -. 1 = ( 2 x. x ) ) |
| 13 |
|
eqcom |
|- ( 2 = ( ( 2 x. x ) + 1 ) <-> ( ( 2 x. x ) + 1 ) = 2 ) |
| 14 |
13
|
a1i |
|- ( x e. ZZ -> ( 2 = ( ( 2 x. x ) + 1 ) <-> ( ( 2 x. x ) + 1 ) = 2 ) ) |
| 15 |
8 7
|
mulcld |
|- ( x e. ZZ -> ( 2 x. x ) e. CC ) |
| 16 |
|
subadd2 |
|- ( ( 2 e. CC /\ 1 e. CC /\ ( 2 x. x ) e. CC ) -> ( ( 2 - 1 ) = ( 2 x. x ) <-> ( ( 2 x. x ) + 1 ) = 2 ) ) |
| 17 |
16
|
bicomd |
|- ( ( 2 e. CC /\ 1 e. CC /\ ( 2 x. x ) e. CC ) -> ( ( ( 2 x. x ) + 1 ) = 2 <-> ( 2 - 1 ) = ( 2 x. x ) ) ) |
| 18 |
8 6 15 17
|
syl3anc |
|- ( x e. ZZ -> ( ( ( 2 x. x ) + 1 ) = 2 <-> ( 2 - 1 ) = ( 2 x. x ) ) ) |
| 19 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 20 |
19
|
a1i |
|- ( x e. ZZ -> ( 2 - 1 ) = 1 ) |
| 21 |
20
|
eqeq1d |
|- ( x e. ZZ -> ( ( 2 - 1 ) = ( 2 x. x ) <-> 1 = ( 2 x. x ) ) ) |
| 22 |
14 18 21
|
3bitrd |
|- ( x e. ZZ -> ( 2 = ( ( 2 x. x ) + 1 ) <-> 1 = ( 2 x. x ) ) ) |
| 23 |
12 22
|
mtbird |
|- ( x e. ZZ -> -. 2 = ( ( 2 x. x ) + 1 ) ) |
| 24 |
23
|
nrex |
|- -. E. x e. ZZ 2 = ( ( 2 x. x ) + 1 ) |
| 25 |
24
|
intnan |
|- -. ( 2 e. ZZ /\ E. x e. ZZ 2 = ( ( 2 x. x ) + 1 ) ) |
| 26 |
|
eqeq1 |
|- ( z = 2 -> ( z = ( ( 2 x. x ) + 1 ) <-> 2 = ( ( 2 x. x ) + 1 ) ) ) |
| 27 |
26
|
rexbidv |
|- ( z = 2 -> ( E. x e. ZZ z = ( ( 2 x. x ) + 1 ) <-> E. x e. ZZ 2 = ( ( 2 x. x ) + 1 ) ) ) |
| 28 |
27 1
|
elrab2 |
|- ( 2 e. O <-> ( 2 e. ZZ /\ E. x e. ZZ 2 = ( ( 2 x. x ) + 1 ) ) ) |
| 29 |
25 28
|
mtbir |
|- -. 2 e. O |
| 30 |
29
|
nelir |
|- 2 e/ O |