Metamath Proof Explorer


Theorem 2nodd

Description: 2 is not an odd integer. (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypothesis oddinmgm.e
|- O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) }
Assertion 2nodd
|- 2 e/ O

Proof

Step Hyp Ref Expression
1 oddinmgm.e
 |-  O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) }
2 halfnz
 |-  -. ( 1 / 2 ) e. ZZ
3 eleq1
 |-  ( ( 1 / 2 ) = x -> ( ( 1 / 2 ) e. ZZ <-> x e. ZZ ) )
4 2 3 mtbii
 |-  ( ( 1 / 2 ) = x -> -. x e. ZZ )
5 4 con2i
 |-  ( x e. ZZ -> -. ( 1 / 2 ) = x )
6 1cnd
 |-  ( x e. ZZ -> 1 e. CC )
7 zcn
 |-  ( x e. ZZ -> x e. CC )
8 2cnd
 |-  ( x e. ZZ -> 2 e. CC )
9 2ne0
 |-  2 =/= 0
10 9 a1i
 |-  ( x e. ZZ -> 2 =/= 0 )
11 6 7 8 10 divmul2d
 |-  ( x e. ZZ -> ( ( 1 / 2 ) = x <-> 1 = ( 2 x. x ) ) )
12 5 11 mtbid
 |-  ( x e. ZZ -> -. 1 = ( 2 x. x ) )
13 eqcom
 |-  ( 2 = ( ( 2 x. x ) + 1 ) <-> ( ( 2 x. x ) + 1 ) = 2 )
14 13 a1i
 |-  ( x e. ZZ -> ( 2 = ( ( 2 x. x ) + 1 ) <-> ( ( 2 x. x ) + 1 ) = 2 ) )
15 8 7 mulcld
 |-  ( x e. ZZ -> ( 2 x. x ) e. CC )
16 subadd2
 |-  ( ( 2 e. CC /\ 1 e. CC /\ ( 2 x. x ) e. CC ) -> ( ( 2 - 1 ) = ( 2 x. x ) <-> ( ( 2 x. x ) + 1 ) = 2 ) )
17 16 bicomd
 |-  ( ( 2 e. CC /\ 1 e. CC /\ ( 2 x. x ) e. CC ) -> ( ( ( 2 x. x ) + 1 ) = 2 <-> ( 2 - 1 ) = ( 2 x. x ) ) )
18 8 6 15 17 syl3anc
 |-  ( x e. ZZ -> ( ( ( 2 x. x ) + 1 ) = 2 <-> ( 2 - 1 ) = ( 2 x. x ) ) )
19 2m1e1
 |-  ( 2 - 1 ) = 1
20 19 a1i
 |-  ( x e. ZZ -> ( 2 - 1 ) = 1 )
21 20 eqeq1d
 |-  ( x e. ZZ -> ( ( 2 - 1 ) = ( 2 x. x ) <-> 1 = ( 2 x. x ) ) )
22 14 18 21 3bitrd
 |-  ( x e. ZZ -> ( 2 = ( ( 2 x. x ) + 1 ) <-> 1 = ( 2 x. x ) ) )
23 12 22 mtbird
 |-  ( x e. ZZ -> -. 2 = ( ( 2 x. x ) + 1 ) )
24 23 nrex
 |-  -. E. x e. ZZ 2 = ( ( 2 x. x ) + 1 )
25 24 intnan
 |-  -. ( 2 e. ZZ /\ E. x e. ZZ 2 = ( ( 2 x. x ) + 1 ) )
26 eqeq1
 |-  ( z = 2 -> ( z = ( ( 2 x. x ) + 1 ) <-> 2 = ( ( 2 x. x ) + 1 ) ) )
27 26 rexbidv
 |-  ( z = 2 -> ( E. x e. ZZ z = ( ( 2 x. x ) + 1 ) <-> E. x e. ZZ 2 = ( ( 2 x. x ) + 1 ) ) )
28 27 1 elrab2
 |-  ( 2 e. O <-> ( 2 e. ZZ /\ E. x e. ZZ 2 = ( ( 2 x. x ) + 1 ) ) )
29 25 28 mtbir
 |-  -. 2 e. O
30 29 nelir
 |-  2 e/ O