Step |
Hyp |
Ref |
Expression |
1 |
|
oddinmgm.e |
⊢ 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) } |
2 |
|
halfnz |
⊢ ¬ ( 1 / 2 ) ∈ ℤ |
3 |
|
eleq1 |
⊢ ( ( 1 / 2 ) = 𝑥 → ( ( 1 / 2 ) ∈ ℤ ↔ 𝑥 ∈ ℤ ) ) |
4 |
2 3
|
mtbii |
⊢ ( ( 1 / 2 ) = 𝑥 → ¬ 𝑥 ∈ ℤ ) |
5 |
4
|
con2i |
⊢ ( 𝑥 ∈ ℤ → ¬ ( 1 / 2 ) = 𝑥 ) |
6 |
|
1cnd |
⊢ ( 𝑥 ∈ ℤ → 1 ∈ ℂ ) |
7 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
8 |
|
2cnd |
⊢ ( 𝑥 ∈ ℤ → 2 ∈ ℂ ) |
9 |
|
2ne0 |
⊢ 2 ≠ 0 |
10 |
9
|
a1i |
⊢ ( 𝑥 ∈ ℤ → 2 ≠ 0 ) |
11 |
6 7 8 10
|
divmul2d |
⊢ ( 𝑥 ∈ ℤ → ( ( 1 / 2 ) = 𝑥 ↔ 1 = ( 2 · 𝑥 ) ) ) |
12 |
5 11
|
mtbid |
⊢ ( 𝑥 ∈ ℤ → ¬ 1 = ( 2 · 𝑥 ) ) |
13 |
|
eqcom |
⊢ ( 2 = ( ( 2 · 𝑥 ) + 1 ) ↔ ( ( 2 · 𝑥 ) + 1 ) = 2 ) |
14 |
13
|
a1i |
⊢ ( 𝑥 ∈ ℤ → ( 2 = ( ( 2 · 𝑥 ) + 1 ) ↔ ( ( 2 · 𝑥 ) + 1 ) = 2 ) ) |
15 |
8 7
|
mulcld |
⊢ ( 𝑥 ∈ ℤ → ( 2 · 𝑥 ) ∈ ℂ ) |
16 |
|
subadd2 |
⊢ ( ( 2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 · 𝑥 ) ∈ ℂ ) → ( ( 2 − 1 ) = ( 2 · 𝑥 ) ↔ ( ( 2 · 𝑥 ) + 1 ) = 2 ) ) |
17 |
16
|
bicomd |
⊢ ( ( 2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 · 𝑥 ) ∈ ℂ ) → ( ( ( 2 · 𝑥 ) + 1 ) = 2 ↔ ( 2 − 1 ) = ( 2 · 𝑥 ) ) ) |
18 |
8 6 15 17
|
syl3anc |
⊢ ( 𝑥 ∈ ℤ → ( ( ( 2 · 𝑥 ) + 1 ) = 2 ↔ ( 2 − 1 ) = ( 2 · 𝑥 ) ) ) |
19 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
20 |
19
|
a1i |
⊢ ( 𝑥 ∈ ℤ → ( 2 − 1 ) = 1 ) |
21 |
20
|
eqeq1d |
⊢ ( 𝑥 ∈ ℤ → ( ( 2 − 1 ) = ( 2 · 𝑥 ) ↔ 1 = ( 2 · 𝑥 ) ) ) |
22 |
14 18 21
|
3bitrd |
⊢ ( 𝑥 ∈ ℤ → ( 2 = ( ( 2 · 𝑥 ) + 1 ) ↔ 1 = ( 2 · 𝑥 ) ) ) |
23 |
12 22
|
mtbird |
⊢ ( 𝑥 ∈ ℤ → ¬ 2 = ( ( 2 · 𝑥 ) + 1 ) ) |
24 |
23
|
nrex |
⊢ ¬ ∃ 𝑥 ∈ ℤ 2 = ( ( 2 · 𝑥 ) + 1 ) |
25 |
24
|
intnan |
⊢ ¬ ( 2 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 2 = ( ( 2 · 𝑥 ) + 1 ) ) |
26 |
|
eqeq1 |
⊢ ( 𝑧 = 2 → ( 𝑧 = ( ( 2 · 𝑥 ) + 1 ) ↔ 2 = ( ( 2 · 𝑥 ) + 1 ) ) ) |
27 |
26
|
rexbidv |
⊢ ( 𝑧 = 2 → ( ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) ↔ ∃ 𝑥 ∈ ℤ 2 = ( ( 2 · 𝑥 ) + 1 ) ) ) |
28 |
27 1
|
elrab2 |
⊢ ( 2 ∈ 𝑂 ↔ ( 2 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 2 = ( ( 2 · 𝑥 ) + 1 ) ) ) |
29 |
25 28
|
mtbir |
⊢ ¬ 2 ∈ 𝑂 |
30 |
29
|
nelir |
⊢ 2 ∉ 𝑂 |