Metamath Proof Explorer


Theorem 2nodd

Description: 2 is not an odd integer. (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypothesis oddinmgm.e 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) }
Assertion 2nodd 2 ∉ 𝑂

Proof

Step Hyp Ref Expression
1 oddinmgm.e 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) }
2 halfnz ¬ ( 1 / 2 ) ∈ ℤ
3 eleq1 ( ( 1 / 2 ) = 𝑥 → ( ( 1 / 2 ) ∈ ℤ ↔ 𝑥 ∈ ℤ ) )
4 2 3 mtbii ( ( 1 / 2 ) = 𝑥 → ¬ 𝑥 ∈ ℤ )
5 4 con2i ( 𝑥 ∈ ℤ → ¬ ( 1 / 2 ) = 𝑥 )
6 1cnd ( 𝑥 ∈ ℤ → 1 ∈ ℂ )
7 zcn ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ )
8 2cnd ( 𝑥 ∈ ℤ → 2 ∈ ℂ )
9 2ne0 2 ≠ 0
10 9 a1i ( 𝑥 ∈ ℤ → 2 ≠ 0 )
11 6 7 8 10 divmul2d ( 𝑥 ∈ ℤ → ( ( 1 / 2 ) = 𝑥 ↔ 1 = ( 2 · 𝑥 ) ) )
12 5 11 mtbid ( 𝑥 ∈ ℤ → ¬ 1 = ( 2 · 𝑥 ) )
13 eqcom ( 2 = ( ( 2 · 𝑥 ) + 1 ) ↔ ( ( 2 · 𝑥 ) + 1 ) = 2 )
14 13 a1i ( 𝑥 ∈ ℤ → ( 2 = ( ( 2 · 𝑥 ) + 1 ) ↔ ( ( 2 · 𝑥 ) + 1 ) = 2 ) )
15 8 7 mulcld ( 𝑥 ∈ ℤ → ( 2 · 𝑥 ) ∈ ℂ )
16 subadd2 ( ( 2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 · 𝑥 ) ∈ ℂ ) → ( ( 2 − 1 ) = ( 2 · 𝑥 ) ↔ ( ( 2 · 𝑥 ) + 1 ) = 2 ) )
17 16 bicomd ( ( 2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 · 𝑥 ) ∈ ℂ ) → ( ( ( 2 · 𝑥 ) + 1 ) = 2 ↔ ( 2 − 1 ) = ( 2 · 𝑥 ) ) )
18 8 6 15 17 syl3anc ( 𝑥 ∈ ℤ → ( ( ( 2 · 𝑥 ) + 1 ) = 2 ↔ ( 2 − 1 ) = ( 2 · 𝑥 ) ) )
19 2m1e1 ( 2 − 1 ) = 1
20 19 a1i ( 𝑥 ∈ ℤ → ( 2 − 1 ) = 1 )
21 20 eqeq1d ( 𝑥 ∈ ℤ → ( ( 2 − 1 ) = ( 2 · 𝑥 ) ↔ 1 = ( 2 · 𝑥 ) ) )
22 14 18 21 3bitrd ( 𝑥 ∈ ℤ → ( 2 = ( ( 2 · 𝑥 ) + 1 ) ↔ 1 = ( 2 · 𝑥 ) ) )
23 12 22 mtbird ( 𝑥 ∈ ℤ → ¬ 2 = ( ( 2 · 𝑥 ) + 1 ) )
24 23 nrex ¬ ∃ 𝑥 ∈ ℤ 2 = ( ( 2 · 𝑥 ) + 1 )
25 24 intnan ¬ ( 2 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 2 = ( ( 2 · 𝑥 ) + 1 ) )
26 eqeq1 ( 𝑧 = 2 → ( 𝑧 = ( ( 2 · 𝑥 ) + 1 ) ↔ 2 = ( ( 2 · 𝑥 ) + 1 ) ) )
27 26 rexbidv ( 𝑧 = 2 → ( ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) ↔ ∃ 𝑥 ∈ ℤ 2 = ( ( 2 · 𝑥 ) + 1 ) ) )
28 27 1 elrab2 ( 2 ∈ 𝑂 ↔ ( 2 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 2 = ( ( 2 · 𝑥 ) + 1 ) ) )
29 25 28 mtbir ¬ 2 ∈ 𝑂
30 29 nelir 2 ∉ 𝑂