Metamath Proof Explorer


Theorem oddibas

Description: Lemma 1 for oddinmgm : The base set of M is the set of all odd integers. (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypotheses oddinmgm.e 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) }
oddinmgm.r 𝑀 = ( ℂflds 𝑂 )
Assertion oddibas 𝑂 = ( Base ‘ 𝑀 )

Proof

Step Hyp Ref Expression
1 oddinmgm.e 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) }
2 oddinmgm.r 𝑀 = ( ℂflds 𝑂 )
3 ssrab2 { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) } ⊆ ℤ
4 1 3 eqsstri 𝑂 ⊆ ℤ
5 zsscn ℤ ⊆ ℂ
6 4 5 sstri 𝑂 ⊆ ℂ
7 2 cnfldsrngbas ( 𝑂 ⊆ ℂ → 𝑂 = ( Base ‘ 𝑀 ) )
8 6 7 ax-mp 𝑂 = ( Base ‘ 𝑀 )