Description: Lemma 1 for oddinmgm : The base set of M is the set of all odd integers. (Contributed by AV, 3-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oddinmgm.e | ⊢ 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) } | |
| oddinmgm.r | ⊢ 𝑀 = ( ℂfld ↾s 𝑂 ) | ||
| Assertion | oddibas | ⊢ 𝑂 = ( Base ‘ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddinmgm.e | ⊢ 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) } | |
| 2 | oddinmgm.r | ⊢ 𝑀 = ( ℂfld ↾s 𝑂 ) | |
| 3 | ssrab2 | ⊢ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) } ⊆ ℤ | |
| 4 | 1 3 | eqsstri | ⊢ 𝑂 ⊆ ℤ |
| 5 | zsscn | ⊢ ℤ ⊆ ℂ | |
| 6 | 4 5 | sstri | ⊢ 𝑂 ⊆ ℂ |
| 7 | 2 | cnfldsrngbas | ⊢ ( 𝑂 ⊆ ℂ → 𝑂 = ( Base ‘ 𝑀 ) ) |
| 8 | 6 7 | ax-mp | ⊢ 𝑂 = ( Base ‘ 𝑀 ) |