Metamath Proof Explorer


Theorem oddibas

Description: Lemma 1 for oddinmgm : The base set of M is the set of all odd integers. (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypotheses oddinmgm.e O = z | x z = 2 x + 1
oddinmgm.r M = fld 𝑠 O
Assertion oddibas O = Base M

Proof

Step Hyp Ref Expression
1 oddinmgm.e O = z | x z = 2 x + 1
2 oddinmgm.r M = fld 𝑠 O
3 ssrab2 z | x z = 2 x + 1
4 1 3 eqsstri O
5 zsscn
6 4 5 sstri O
7 2 cnfldsrngbas O O = Base M
8 6 7 ax-mp O = Base M