Description: Lemma 1 for oddinmgm : The base set of M is the set of all odd integers. (Contributed by AV, 3-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oddinmgm.e | ||
oddinmgm.r | |||
Assertion | oddibas |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddinmgm.e | ||
2 | oddinmgm.r | ||
3 | ssrab2 | ||
4 | 1 3 | eqsstri | |
5 | zsscn | ||
6 | 4 5 | sstri | |
7 | 2 | cnfldsrngbas | |
8 | 6 7 | ax-mp |