Metamath Proof Explorer


Theorem oddinmgm

Description: The structure of all odd integers together with the addition of complex numbers is not a magma. Remark: the structure of the complementary subset of the set of integers, the even integers, is a magma, actually an abelian group, see 2zrngaabl , and even a non-unital ring, see 2zrng . (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypotheses oddinmgm.e O = z | x z = 2 x + 1
oddinmgm.r M = fld 𝑠 O
Assertion oddinmgm M Mgm

Proof

Step Hyp Ref Expression
1 oddinmgm.e O = z | x z = 2 x + 1
2 oddinmgm.r M = fld 𝑠 O
3 1 1odd 1 O
4 1 2nodd 2 O
5 1p1e2 1 + 1 = 2
6 neleq1 1 + 1 = 2 1 + 1 O 2 O
7 5 6 ax-mp 1 + 1 O 2 O
8 4 7 mpbir 1 + 1 O
9 1 2 oddibas O = Base M
10 1 2 oddiadd + = + M
11 9 10 isnmgm 1 O 1 O 1 + 1 O M Mgm
12 3 3 8 11 mp3an M Mgm