Metamath Proof Explorer


Theorem 1odd

Description: 1 is an odd integer. (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypothesis oddinmgm.e O=z|xz=2x+1
Assertion 1odd 1O

Proof

Step Hyp Ref Expression
1 oddinmgm.e O=z|xz=2x+1
2 1z 1
3 0z 0
4 id 00
5 oveq2 x=02x=20
6 2t0e0 20=0
7 5 6 eqtrdi x=02x=0
8 7 oveq1d x=02x+1=0+1
9 8 eqeq2d x=01=2x+11=0+1
10 9 adantl 0x=01=2x+11=0+1
11 1e0p1 1=0+1
12 11 a1i 01=0+1
13 4 10 12 rspcedvd 0x1=2x+1
14 3 13 ax-mp x1=2x+1
15 eqeq1 z=1z=2x+11=2x+1
16 15 rexbidv z=1xz=2x+1x1=2x+1
17 16 1 elrab2 1O1x1=2x+1
18 2 14 17 mpbir2an 1O