Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Monoids (extension)
Examples and counterexamples for magmas, semigroups and monoids (extension)
1odd
Next ⟩
2nodd
Metamath Proof Explorer
Ascii
Unicode
Theorem
1odd
Description:
1 is an odd integer.
(Contributed by
AV
, 3-Feb-2020)
Ref
Expression
Hypothesis
oddinmgm.e
⊢
O
=
z
∈
ℤ
|
∃
x
∈
ℤ
z
=
2
⁢
x
+
1
Assertion
1odd
⊢
1
∈
O
Proof
Step
Hyp
Ref
Expression
1
oddinmgm.e
⊢
O
=
z
∈
ℤ
|
∃
x
∈
ℤ
z
=
2
⁢
x
+
1
2
1z
⊢
1
∈
ℤ
3
0z
⊢
0
∈
ℤ
4
id
⊢
0
∈
ℤ
→
0
∈
ℤ
5
oveq2
⊢
x
=
0
→
2
⁢
x
=
2
⋅
0
6
2t0e0
⊢
2
⋅
0
=
0
7
5
6
eqtrdi
⊢
x
=
0
→
2
⁢
x
=
0
8
7
oveq1d
⊢
x
=
0
→
2
⁢
x
+
1
=
0
+
1
9
8
eqeq2d
⊢
x
=
0
→
1
=
2
⁢
x
+
1
↔
1
=
0
+
1
10
9
adantl
⊢
0
∈
ℤ
∧
x
=
0
→
1
=
2
⁢
x
+
1
↔
1
=
0
+
1
11
1e0p1
⊢
1
=
0
+
1
12
11
a1i
⊢
0
∈
ℤ
→
1
=
0
+
1
13
4
10
12
rspcedvd
⊢
0
∈
ℤ
→
∃
x
∈
ℤ
1
=
2
⁢
x
+
1
14
3
13
ax-mp
⊢
∃
x
∈
ℤ
1
=
2
⁢
x
+
1
15
eqeq1
⊢
z
=
1
→
z
=
2
⁢
x
+
1
↔
1
=
2
⁢
x
+
1
16
15
rexbidv
⊢
z
=
1
→
∃
x
∈
ℤ
z
=
2
⁢
x
+
1
↔
∃
x
∈
ℤ
1
=
2
⁢
x
+
1
17
16
1
elrab2
⊢
1
∈
O
↔
1
∈
ℤ
∧
∃
x
∈
ℤ
1
=
2
⁢
x
+
1
18
2
14
17
mpbir2an
⊢
1
∈
O