Metamath Proof Explorer


Theorem 1odd

Description: 1 is an odd integer. (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypothesis oddinmgm.e O = z | x z = 2 x + 1
Assertion 1odd 1 O

Proof

Step Hyp Ref Expression
1 oddinmgm.e O = z | x z = 2 x + 1
2 1z 1
3 0z 0
4 id 0 0
5 oveq2 x = 0 2 x = 2 0
6 2t0e0 2 0 = 0
7 5 6 eqtrdi x = 0 2 x = 0
8 7 oveq1d x = 0 2 x + 1 = 0 + 1
9 8 eqeq2d x = 0 1 = 2 x + 1 1 = 0 + 1
10 9 adantl 0 x = 0 1 = 2 x + 1 1 = 0 + 1
11 1e0p1 1 = 0 + 1
12 11 a1i 0 1 = 0 + 1
13 4 10 12 rspcedvd 0 x 1 = 2 x + 1
14 3 13 ax-mp x 1 = 2 x + 1
15 eqeq1 z = 1 z = 2 x + 1 1 = 2 x + 1
16 15 rexbidv z = 1 x z = 2 x + 1 x 1 = 2 x + 1
17 16 1 elrab2 1 O 1 x 1 = 2 x + 1
18 2 14 17 mpbir2an 1 O