Metamath Proof Explorer


Theorem 1odd

Description: 1 is an odd integer. (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypothesis oddinmgm.e
|- O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) }
Assertion 1odd
|- 1 e. O

Proof

Step Hyp Ref Expression
1 oddinmgm.e
 |-  O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) }
2 1z
 |-  1 e. ZZ
3 0z
 |-  0 e. ZZ
4 id
 |-  ( 0 e. ZZ -> 0 e. ZZ )
5 oveq2
 |-  ( x = 0 -> ( 2 x. x ) = ( 2 x. 0 ) )
6 2t0e0
 |-  ( 2 x. 0 ) = 0
7 5 6 eqtrdi
 |-  ( x = 0 -> ( 2 x. x ) = 0 )
8 7 oveq1d
 |-  ( x = 0 -> ( ( 2 x. x ) + 1 ) = ( 0 + 1 ) )
9 8 eqeq2d
 |-  ( x = 0 -> ( 1 = ( ( 2 x. x ) + 1 ) <-> 1 = ( 0 + 1 ) ) )
10 9 adantl
 |-  ( ( 0 e. ZZ /\ x = 0 ) -> ( 1 = ( ( 2 x. x ) + 1 ) <-> 1 = ( 0 + 1 ) ) )
11 1e0p1
 |-  1 = ( 0 + 1 )
12 11 a1i
 |-  ( 0 e. ZZ -> 1 = ( 0 + 1 ) )
13 4 10 12 rspcedvd
 |-  ( 0 e. ZZ -> E. x e. ZZ 1 = ( ( 2 x. x ) + 1 ) )
14 3 13 ax-mp
 |-  E. x e. ZZ 1 = ( ( 2 x. x ) + 1 )
15 eqeq1
 |-  ( z = 1 -> ( z = ( ( 2 x. x ) + 1 ) <-> 1 = ( ( 2 x. x ) + 1 ) ) )
16 15 rexbidv
 |-  ( z = 1 -> ( E. x e. ZZ z = ( ( 2 x. x ) + 1 ) <-> E. x e. ZZ 1 = ( ( 2 x. x ) + 1 ) ) )
17 16 1 elrab2
 |-  ( 1 e. O <-> ( 1 e. ZZ /\ E. x e. ZZ 1 = ( ( 2 x. x ) + 1 ) ) )
18 2 14 17 mpbir2an
 |-  1 e. O