Step |
Hyp |
Ref |
Expression |
1 |
|
oddinmgm.e |
|- O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) } |
2 |
|
1z |
|- 1 e. ZZ |
3 |
|
0z |
|- 0 e. ZZ |
4 |
|
id |
|- ( 0 e. ZZ -> 0 e. ZZ ) |
5 |
|
oveq2 |
|- ( x = 0 -> ( 2 x. x ) = ( 2 x. 0 ) ) |
6 |
|
2t0e0 |
|- ( 2 x. 0 ) = 0 |
7 |
5 6
|
eqtrdi |
|- ( x = 0 -> ( 2 x. x ) = 0 ) |
8 |
7
|
oveq1d |
|- ( x = 0 -> ( ( 2 x. x ) + 1 ) = ( 0 + 1 ) ) |
9 |
8
|
eqeq2d |
|- ( x = 0 -> ( 1 = ( ( 2 x. x ) + 1 ) <-> 1 = ( 0 + 1 ) ) ) |
10 |
9
|
adantl |
|- ( ( 0 e. ZZ /\ x = 0 ) -> ( 1 = ( ( 2 x. x ) + 1 ) <-> 1 = ( 0 + 1 ) ) ) |
11 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
12 |
11
|
a1i |
|- ( 0 e. ZZ -> 1 = ( 0 + 1 ) ) |
13 |
4 10 12
|
rspcedvd |
|- ( 0 e. ZZ -> E. x e. ZZ 1 = ( ( 2 x. x ) + 1 ) ) |
14 |
3 13
|
ax-mp |
|- E. x e. ZZ 1 = ( ( 2 x. x ) + 1 ) |
15 |
|
eqeq1 |
|- ( z = 1 -> ( z = ( ( 2 x. x ) + 1 ) <-> 1 = ( ( 2 x. x ) + 1 ) ) ) |
16 |
15
|
rexbidv |
|- ( z = 1 -> ( E. x e. ZZ z = ( ( 2 x. x ) + 1 ) <-> E. x e. ZZ 1 = ( ( 2 x. x ) + 1 ) ) ) |
17 |
16 1
|
elrab2 |
|- ( 1 e. O <-> ( 1 e. ZZ /\ E. x e. ZZ 1 = ( ( 2 x. x ) + 1 ) ) ) |
18 |
2 14 17
|
mpbir2an |
|- 1 e. O |