| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddinmgm.e |  |-  O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) } | 
						
							| 2 |  | 1z |  |-  1 e. ZZ | 
						
							| 3 |  | 0z |  |-  0 e. ZZ | 
						
							| 4 |  | id |  |-  ( 0 e. ZZ -> 0 e. ZZ ) | 
						
							| 5 |  | oveq2 |  |-  ( x = 0 -> ( 2 x. x ) = ( 2 x. 0 ) ) | 
						
							| 6 |  | 2t0e0 |  |-  ( 2 x. 0 ) = 0 | 
						
							| 7 | 5 6 | eqtrdi |  |-  ( x = 0 -> ( 2 x. x ) = 0 ) | 
						
							| 8 | 7 | oveq1d |  |-  ( x = 0 -> ( ( 2 x. x ) + 1 ) = ( 0 + 1 ) ) | 
						
							| 9 | 8 | eqeq2d |  |-  ( x = 0 -> ( 1 = ( ( 2 x. x ) + 1 ) <-> 1 = ( 0 + 1 ) ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( 0 e. ZZ /\ x = 0 ) -> ( 1 = ( ( 2 x. x ) + 1 ) <-> 1 = ( 0 + 1 ) ) ) | 
						
							| 11 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 12 | 11 | a1i |  |-  ( 0 e. ZZ -> 1 = ( 0 + 1 ) ) | 
						
							| 13 | 4 10 12 | rspcedvd |  |-  ( 0 e. ZZ -> E. x e. ZZ 1 = ( ( 2 x. x ) + 1 ) ) | 
						
							| 14 | 3 13 | ax-mp |  |-  E. x e. ZZ 1 = ( ( 2 x. x ) + 1 ) | 
						
							| 15 |  | eqeq1 |  |-  ( z = 1 -> ( z = ( ( 2 x. x ) + 1 ) <-> 1 = ( ( 2 x. x ) + 1 ) ) ) | 
						
							| 16 | 15 | rexbidv |  |-  ( z = 1 -> ( E. x e. ZZ z = ( ( 2 x. x ) + 1 ) <-> E. x e. ZZ 1 = ( ( 2 x. x ) + 1 ) ) ) | 
						
							| 17 | 16 1 | elrab2 |  |-  ( 1 e. O <-> ( 1 e. ZZ /\ E. x e. ZZ 1 = ( ( 2 x. x ) + 1 ) ) ) | 
						
							| 18 | 2 14 17 | mpbir2an |  |-  1 e. O |