Metamath Proof Explorer


Theorem 1odd

Description: 1 is an odd integer. (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypothesis oddinmgm.e 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) }
Assertion 1odd 1 ∈ 𝑂

Proof

Step Hyp Ref Expression
1 oddinmgm.e 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) }
2 1z 1 ∈ ℤ
3 0z 0 ∈ ℤ
4 id ( 0 ∈ ℤ → 0 ∈ ℤ )
5 oveq2 ( 𝑥 = 0 → ( 2 · 𝑥 ) = ( 2 · 0 ) )
6 2t0e0 ( 2 · 0 ) = 0
7 5 6 eqtrdi ( 𝑥 = 0 → ( 2 · 𝑥 ) = 0 )
8 7 oveq1d ( 𝑥 = 0 → ( ( 2 · 𝑥 ) + 1 ) = ( 0 + 1 ) )
9 8 eqeq2d ( 𝑥 = 0 → ( 1 = ( ( 2 · 𝑥 ) + 1 ) ↔ 1 = ( 0 + 1 ) ) )
10 9 adantl ( ( 0 ∈ ℤ ∧ 𝑥 = 0 ) → ( 1 = ( ( 2 · 𝑥 ) + 1 ) ↔ 1 = ( 0 + 1 ) ) )
11 1e0p1 1 = ( 0 + 1 )
12 11 a1i ( 0 ∈ ℤ → 1 = ( 0 + 1 ) )
13 4 10 12 rspcedvd ( 0 ∈ ℤ → ∃ 𝑥 ∈ ℤ 1 = ( ( 2 · 𝑥 ) + 1 ) )
14 3 13 ax-mp 𝑥 ∈ ℤ 1 = ( ( 2 · 𝑥 ) + 1 )
15 eqeq1 ( 𝑧 = 1 → ( 𝑧 = ( ( 2 · 𝑥 ) + 1 ) ↔ 1 = ( ( 2 · 𝑥 ) + 1 ) ) )
16 15 rexbidv ( 𝑧 = 1 → ( ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) ↔ ∃ 𝑥 ∈ ℤ 1 = ( ( 2 · 𝑥 ) + 1 ) ) )
17 16 1 elrab2 ( 1 ∈ 𝑂 ↔ ( 1 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 1 = ( ( 2 · 𝑥 ) + 1 ) ) )
18 2 14 17 mpbir2an 1 ∈ 𝑂