Step |
Hyp |
Ref |
Expression |
1 |
|
oddinmgm.e |
⊢ 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) } |
2 |
|
1z |
⊢ 1 ∈ ℤ |
3 |
|
0z |
⊢ 0 ∈ ℤ |
4 |
|
id |
⊢ ( 0 ∈ ℤ → 0 ∈ ℤ ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 2 · 𝑥 ) = ( 2 · 0 ) ) |
6 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
7 |
5 6
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 2 · 𝑥 ) = 0 ) |
8 |
7
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 2 · 𝑥 ) + 1 ) = ( 0 + 1 ) ) |
9 |
8
|
eqeq2d |
⊢ ( 𝑥 = 0 → ( 1 = ( ( 2 · 𝑥 ) + 1 ) ↔ 1 = ( 0 + 1 ) ) ) |
10 |
9
|
adantl |
⊢ ( ( 0 ∈ ℤ ∧ 𝑥 = 0 ) → ( 1 = ( ( 2 · 𝑥 ) + 1 ) ↔ 1 = ( 0 + 1 ) ) ) |
11 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
12 |
11
|
a1i |
⊢ ( 0 ∈ ℤ → 1 = ( 0 + 1 ) ) |
13 |
4 10 12
|
rspcedvd |
⊢ ( 0 ∈ ℤ → ∃ 𝑥 ∈ ℤ 1 = ( ( 2 · 𝑥 ) + 1 ) ) |
14 |
3 13
|
ax-mp |
⊢ ∃ 𝑥 ∈ ℤ 1 = ( ( 2 · 𝑥 ) + 1 ) |
15 |
|
eqeq1 |
⊢ ( 𝑧 = 1 → ( 𝑧 = ( ( 2 · 𝑥 ) + 1 ) ↔ 1 = ( ( 2 · 𝑥 ) + 1 ) ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝑧 = 1 → ( ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) ↔ ∃ 𝑥 ∈ ℤ 1 = ( ( 2 · 𝑥 ) + 1 ) ) ) |
17 |
16 1
|
elrab2 |
⊢ ( 1 ∈ 𝑂 ↔ ( 1 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 1 = ( ( 2 · 𝑥 ) + 1 ) ) ) |
18 |
2 14 17
|
mpbir2an |
⊢ 1 ∈ 𝑂 |