| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddinmgm.e | ⊢ 𝑂  =  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( ( 2  ·  𝑥 )  +  1 ) } | 
						
							| 2 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 3 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 4 |  | id | ⊢ ( 0  ∈  ℤ  →  0  ∈  ℤ ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑥  =  0  →  ( 2  ·  𝑥 )  =  ( 2  ·  0 ) ) | 
						
							| 6 |  | 2t0e0 | ⊢ ( 2  ·  0 )  =  0 | 
						
							| 7 | 5 6 | eqtrdi | ⊢ ( 𝑥  =  0  →  ( 2  ·  𝑥 )  =  0 ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( 𝑥  =  0  →  ( ( 2  ·  𝑥 )  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 9 | 8 | eqeq2d | ⊢ ( 𝑥  =  0  →  ( 1  =  ( ( 2  ·  𝑥 )  +  1 )  ↔  1  =  ( 0  +  1 ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 0  ∈  ℤ  ∧  𝑥  =  0 )  →  ( 1  =  ( ( 2  ·  𝑥 )  +  1 )  ↔  1  =  ( 0  +  1 ) ) ) | 
						
							| 11 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 12 | 11 | a1i | ⊢ ( 0  ∈  ℤ  →  1  =  ( 0  +  1 ) ) | 
						
							| 13 | 4 10 12 | rspcedvd | ⊢ ( 0  ∈  ℤ  →  ∃ 𝑥  ∈  ℤ 1  =  ( ( 2  ·  𝑥 )  +  1 ) ) | 
						
							| 14 | 3 13 | ax-mp | ⊢ ∃ 𝑥  ∈  ℤ 1  =  ( ( 2  ·  𝑥 )  +  1 ) | 
						
							| 15 |  | eqeq1 | ⊢ ( 𝑧  =  1  →  ( 𝑧  =  ( ( 2  ·  𝑥 )  +  1 )  ↔  1  =  ( ( 2  ·  𝑥 )  +  1 ) ) ) | 
						
							| 16 | 15 | rexbidv | ⊢ ( 𝑧  =  1  →  ( ∃ 𝑥  ∈  ℤ 𝑧  =  ( ( 2  ·  𝑥 )  +  1 )  ↔  ∃ 𝑥  ∈  ℤ 1  =  ( ( 2  ·  𝑥 )  +  1 ) ) ) | 
						
							| 17 | 16 1 | elrab2 | ⊢ ( 1  ∈  𝑂  ↔  ( 1  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 1  =  ( ( 2  ·  𝑥 )  +  1 ) ) ) | 
						
							| 18 | 2 14 17 | mpbir2an | ⊢ 1  ∈  𝑂 |