Metamath Proof Explorer


Theorem oddinmgm

Description: The structure of all odd integers together with the addition of complex numbers is not a magma. Remark: the structure of the complementary subset of the set of integers, the even integers, is a magma, actually an abelian group, see 2zrngaabl , and even a non-unital ring, see 2zrng . (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypotheses oddinmgm.e 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) }
oddinmgm.r 𝑀 = ( ℂflds 𝑂 )
Assertion oddinmgm 𝑀 ∉ Mgm

Proof

Step Hyp Ref Expression
1 oddinmgm.e 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) }
2 oddinmgm.r 𝑀 = ( ℂflds 𝑂 )
3 1 1odd 1 ∈ 𝑂
4 1 2nodd 2 ∉ 𝑂
5 1p1e2 ( 1 + 1 ) = 2
6 neleq1 ( ( 1 + 1 ) = 2 → ( ( 1 + 1 ) ∉ 𝑂 ↔ 2 ∉ 𝑂 ) )
7 5 6 ax-mp ( ( 1 + 1 ) ∉ 𝑂 ↔ 2 ∉ 𝑂 )
8 4 7 mpbir ( 1 + 1 ) ∉ 𝑂
9 1 2 oddibas 𝑂 = ( Base ‘ 𝑀 )
10 1 2 oddiadd + = ( +g𝑀 )
11 9 10 isnmgm ( ( 1 ∈ 𝑂 ∧ 1 ∈ 𝑂 ∧ ( 1 + 1 ) ∉ 𝑂 ) → 𝑀 ∉ Mgm )
12 3 3 8 11 mp3an 𝑀 ∉ Mgm