Metamath Proof Explorer
Description: Lemma 2 for oddinmgm : The group addition operation of M is the
addition of complex numbers. (Contributed by AV, 3-Feb-2020)
|
|
Ref |
Expression |
|
Hypotheses |
oddinmgm.e |
⊢ 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) } |
|
|
oddinmgm.r |
⊢ 𝑀 = ( ℂfld ↾s 𝑂 ) |
|
Assertion |
oddiadd |
⊢ + = ( +g ‘ 𝑀 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
oddinmgm.e |
⊢ 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) } |
2 |
|
oddinmgm.r |
⊢ 𝑀 = ( ℂfld ↾s 𝑂 ) |
3 |
|
zex |
⊢ ℤ ∈ V |
4 |
1 3
|
rabex2 |
⊢ 𝑂 ∈ V |
5 |
2
|
cnfldsrngadd |
⊢ ( 𝑂 ∈ V → + = ( +g ‘ 𝑀 ) ) |
6 |
4 5
|
ax-mp |
⊢ + = ( +g ‘ 𝑀 ) |