Metamath Proof Explorer


Theorem oddiadd

Description: Lemma 2 for oddinmgm : The group addition operation of M is the addition of complex numbers. (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypotheses oddinmgm.e 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) }
oddinmgm.r 𝑀 = ( ℂflds 𝑂 )
Assertion oddiadd + = ( +g𝑀 )

Proof

Step Hyp Ref Expression
1 oddinmgm.e 𝑂 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 2 · 𝑥 ) + 1 ) }
2 oddinmgm.r 𝑀 = ( ℂflds 𝑂 )
3 zex ℤ ∈ V
4 1 3 rabex2 𝑂 ∈ V
5 2 cnfldsrngadd ( 𝑂 ∈ V → + = ( +g𝑀 ) )
6 4 5 ax-mp + = ( +g𝑀 )