Description: Lemma 2 for oddinmgm : The group addition operation of M is the addition of complex numbers. (Contributed by AV, 3-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oddinmgm.e | |- O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) } |
|
oddinmgm.r | |- M = ( CCfld |`s O ) |
||
Assertion | oddiadd | |- + = ( +g ` M ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddinmgm.e | |- O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) } |
|
2 | oddinmgm.r | |- M = ( CCfld |`s O ) |
|
3 | zex | |- ZZ e. _V |
|
4 | 1 3 | rabex2 | |- O e. _V |
5 | 2 | cnfldsrngadd | |- ( O e. _V -> + = ( +g ` M ) ) |
6 | 4 5 | ax-mp | |- + = ( +g ` M ) |