Metamath Proof Explorer


Theorem oddiadd

Description: Lemma 2 for oddinmgm : The group addition operation of M is the addition of complex numbers. (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypotheses oddinmgm.e
|- O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) }
oddinmgm.r
|- M = ( CCfld |`s O )
Assertion oddiadd
|- + = ( +g ` M )

Proof

Step Hyp Ref Expression
1 oddinmgm.e
 |-  O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) }
2 oddinmgm.r
 |-  M = ( CCfld |`s O )
3 zex
 |-  ZZ e. _V
4 1 3 rabex2
 |-  O e. _V
5 2 cnfldsrngadd
 |-  ( O e. _V -> + = ( +g ` M ) )
6 4 5 ax-mp
 |-  + = ( +g ` M )