Metamath Proof Explorer


Theorem oddiadd

Description: Lemma 2 for oddinmgm : The group addition operation of M is the addition of complex numbers. (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypotheses oddinmgm.e O = z | x z = 2 x + 1
oddinmgm.r M = fld 𝑠 O
Assertion oddiadd + = + M

Proof

Step Hyp Ref Expression
1 oddinmgm.e O = z | x z = 2 x + 1
2 oddinmgm.r M = fld 𝑠 O
3 zex V
4 1 3 rabex2 O V
5 2 cnfldsrngadd O V + = + M
6 4 5 ax-mp + = + M