Metamath Proof Explorer
Description: R is an (additive) abelian group. (Contributed by AV, 11-Feb-2020)
|
|
Ref |
Expression |
|
Hypotheses |
2zrng.e |
⊢ 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } |
|
|
2zrngbas.r |
⊢ 𝑅 = ( ℂfld ↾s 𝐸 ) |
|
Assertion |
2zrngaabl |
⊢ 𝑅 ∈ Abel |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
2zrng.e |
⊢ 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } |
2 |
|
2zrngbas.r |
⊢ 𝑅 = ( ℂfld ↾s 𝐸 ) |
3 |
1 2
|
2zrngagrp |
⊢ 𝑅 ∈ Grp |
4 |
1 2
|
2zrngacmnd |
⊢ 𝑅 ∈ CMnd |
5 |
3 4
|
pm3.2i |
⊢ ( 𝑅 ∈ Grp ∧ 𝑅 ∈ CMnd ) |
6 |
|
isabl |
⊢ ( 𝑅 ∈ Abel ↔ ( 𝑅 ∈ Grp ∧ 𝑅 ∈ CMnd ) ) |
7 |
5 6
|
mpbir |
⊢ 𝑅 ∈ Abel |