Metamath Proof Explorer


Theorem 2zrngaabl

Description: R is an (additive) abelian group. (Contributed by AV, 11-Feb-2020)

Ref Expression
Hypotheses 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
Assertion 2zrngaabl 𝑅 ∈ Abel

Proof

Step Hyp Ref Expression
1 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2 2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
3 1 2 2zrngagrp 𝑅 ∈ Grp
4 1 2 2zrngacmnd 𝑅 ∈ CMnd
5 3 4 pm3.2i ( 𝑅 ∈ Grp ∧ 𝑅 ∈ CMnd )
6 isabl ( 𝑅 ∈ Abel ↔ ( 𝑅 ∈ Grp ∧ 𝑅 ∈ CMnd ) )
7 5 6 mpbir 𝑅 ∈ Abel