Description: R is an (additive) abelian group. (Contributed by AV, 11-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2zrng.e | |- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } |
|
| 2zrngbas.r | |- R = ( CCfld |`s E ) |
||
| Assertion | 2zrngaabl | |- R e. Abel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2zrng.e | |- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } |
|
| 2 | 2zrngbas.r | |- R = ( CCfld |`s E ) |
|
| 3 | 1 2 | 2zrngagrp | |- R e. Grp |
| 4 | 1 2 | 2zrngacmnd | |- R e. CMnd |
| 5 | 3 4 | pm3.2i | |- ( R e. Grp /\ R e. CMnd ) |
| 6 | isabl | |- ( R e. Abel <-> ( R e. Grp /\ R e. CMnd ) ) |
|
| 7 | 5 6 | mpbir | |- R e. Abel |