Metamath Proof Explorer


Theorem 2zrngaabl

Description: R is an (additive) abelian group. (Contributed by AV, 11-Feb-2020)

Ref Expression
Hypotheses 2zrng.e
|- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) }
2zrngbas.r
|- R = ( CCfld |`s E )
Assertion 2zrngaabl
|- R e. Abel

Proof

Step Hyp Ref Expression
1 2zrng.e
 |-  E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) }
2 2zrngbas.r
 |-  R = ( CCfld |`s E )
3 1 2 2zrngagrp
 |-  R e. Grp
4 1 2 2zrngacmnd
 |-  R e. CMnd
5 3 4 pm3.2i
 |-  ( R e. Grp /\ R e. CMnd )
6 isabl
 |-  ( R e. Abel <-> ( R e. Grp /\ R e. CMnd ) )
7 5 6 mpbir
 |-  R e. Abel