Metamath Proof Explorer


Theorem 2zrngacmnd

Description: R is a commutative (additive) monoid. (Contributed by AV, 11-Feb-2020)

Ref Expression
Hypotheses 2zrng.e
|- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) }
2zrngbas.r
|- R = ( CCfld |`s E )
Assertion 2zrngacmnd
|- R e. CMnd

Proof

Step Hyp Ref Expression
1 2zrng.e
 |-  E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) }
2 2zrngbas.r
 |-  R = ( CCfld |`s E )
3 1 0even
 |-  0 e. E
4 1 2 2zrngbas
 |-  E = ( Base ` R )
5 4 a1i
 |-  ( 0 e. E -> E = ( Base ` R ) )
6 1 2 2zrngadd
 |-  + = ( +g ` R )
7 6 a1i
 |-  ( 0 e. E -> + = ( +g ` R ) )
8 1 2 2zrngamnd
 |-  R e. Mnd
9 8 a1i
 |-  ( 0 e. E -> R e. Mnd )
10 elrabi
 |-  ( x e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } -> x e. ZZ )
11 10 zcnd
 |-  ( x e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } -> x e. CC )
12 11 1 eleq2s
 |-  ( x e. E -> x e. CC )
13 12 adantr
 |-  ( ( x e. E /\ y e. E ) -> x e. CC )
14 elrabi
 |-  ( y e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } -> y e. ZZ )
15 14 zcnd
 |-  ( y e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } -> y e. CC )
16 15 1 eleq2s
 |-  ( y e. E -> y e. CC )
17 16 adantl
 |-  ( ( x e. E /\ y e. E ) -> y e. CC )
18 13 17 addcomd
 |-  ( ( x e. E /\ y e. E ) -> ( x + y ) = ( y + x ) )
19 18 3adant1
 |-  ( ( 0 e. E /\ x e. E /\ y e. E ) -> ( x + y ) = ( y + x ) )
20 5 7 9 19 iscmnd
 |-  ( 0 e. E -> R e. CMnd )
21 3 20 ax-mp
 |-  R e. CMnd