Step |
Hyp |
Ref |
Expression |
1 |
|
2zrng.e |
|- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } |
2 |
|
2zrngbas.r |
|- R = ( CCfld |`s E ) |
3 |
1
|
0even |
|- 0 e. E |
4 |
1 2
|
2zrngbas |
|- E = ( Base ` R ) |
5 |
4
|
a1i |
|- ( 0 e. E -> E = ( Base ` R ) ) |
6 |
1 2
|
2zrngadd |
|- + = ( +g ` R ) |
7 |
6
|
a1i |
|- ( 0 e. E -> + = ( +g ` R ) ) |
8 |
1 2
|
2zrngamnd |
|- R e. Mnd |
9 |
8
|
a1i |
|- ( 0 e. E -> R e. Mnd ) |
10 |
|
elrabi |
|- ( x e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } -> x e. ZZ ) |
11 |
10
|
zcnd |
|- ( x e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } -> x e. CC ) |
12 |
11 1
|
eleq2s |
|- ( x e. E -> x e. CC ) |
13 |
12
|
adantr |
|- ( ( x e. E /\ y e. E ) -> x e. CC ) |
14 |
|
elrabi |
|- ( y e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } -> y e. ZZ ) |
15 |
14
|
zcnd |
|- ( y e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } -> y e. CC ) |
16 |
15 1
|
eleq2s |
|- ( y e. E -> y e. CC ) |
17 |
16
|
adantl |
|- ( ( x e. E /\ y e. E ) -> y e. CC ) |
18 |
13 17
|
addcomd |
|- ( ( x e. E /\ y e. E ) -> ( x + y ) = ( y + x ) ) |
19 |
18
|
3adant1 |
|- ( ( 0 e. E /\ x e. E /\ y e. E ) -> ( x + y ) = ( y + x ) ) |
20 |
5 7 9 19
|
iscmnd |
|- ( 0 e. E -> R e. CMnd ) |
21 |
3 20
|
ax-mp |
|- R e. CMnd |