Step |
Hyp |
Ref |
Expression |
1 |
|
2zrng.e |
⊢ 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } |
2 |
|
2zrngbas.r |
⊢ 𝑅 = ( ℂfld ↾s 𝐸 ) |
3 |
1
|
0even |
⊢ 0 ∈ 𝐸 |
4 |
1 2
|
2zrngbas |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
5 |
4
|
a1i |
⊢ ( 0 ∈ 𝐸 → 𝐸 = ( Base ‘ 𝑅 ) ) |
6 |
1 2
|
2zrngadd |
⊢ + = ( +g ‘ 𝑅 ) |
7 |
6
|
a1i |
⊢ ( 0 ∈ 𝐸 → + = ( +g ‘ 𝑅 ) ) |
8 |
1 2
|
2zrngamnd |
⊢ 𝑅 ∈ Mnd |
9 |
8
|
a1i |
⊢ ( 0 ∈ 𝐸 → 𝑅 ∈ Mnd ) |
10 |
|
elrabi |
⊢ ( 𝑥 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑥 ∈ ℤ ) |
11 |
10
|
zcnd |
⊢ ( 𝑥 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑥 ∈ ℂ ) |
12 |
11 1
|
eleq2s |
⊢ ( 𝑥 ∈ 𝐸 → 𝑥 ∈ ℂ ) |
13 |
12
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸 ) → 𝑥 ∈ ℂ ) |
14 |
|
elrabi |
⊢ ( 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑦 ∈ ℤ ) |
15 |
14
|
zcnd |
⊢ ( 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑦 ∈ ℂ ) |
16 |
15 1
|
eleq2s |
⊢ ( 𝑦 ∈ 𝐸 → 𝑦 ∈ ℂ ) |
17 |
16
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸 ) → 𝑦 ∈ ℂ ) |
18 |
13 17
|
addcomd |
⊢ ( ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
19 |
18
|
3adant1 |
⊢ ( ( 0 ∈ 𝐸 ∧ 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
20 |
5 7 9 19
|
iscmnd |
⊢ ( 0 ∈ 𝐸 → 𝑅 ∈ CMnd ) |
21 |
3 20
|
ax-mp |
⊢ 𝑅 ∈ CMnd |