Metamath Proof Explorer


Theorem 2zrngacmnd

Description: R is a commutative (additive) monoid. (Contributed by AV, 11-Feb-2020)

Ref Expression
Hypotheses 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
Assertion 2zrngacmnd 𝑅 ∈ CMnd

Proof

Step Hyp Ref Expression
1 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2 2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
3 1 0even 0 ∈ 𝐸
4 1 2 2zrngbas 𝐸 = ( Base ‘ 𝑅 )
5 4 a1i ( 0 ∈ 𝐸𝐸 = ( Base ‘ 𝑅 ) )
6 1 2 2zrngadd + = ( +g𝑅 )
7 6 a1i ( 0 ∈ 𝐸 → + = ( +g𝑅 ) )
8 1 2 2zrngamnd 𝑅 ∈ Mnd
9 8 a1i ( 0 ∈ 𝐸𝑅 ∈ Mnd )
10 elrabi ( 𝑥 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑥 ∈ ℤ )
11 10 zcnd ( 𝑥 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑥 ∈ ℂ )
12 11 1 eleq2s ( 𝑥𝐸𝑥 ∈ ℂ )
13 12 adantr ( ( 𝑥𝐸𝑦𝐸 ) → 𝑥 ∈ ℂ )
14 elrabi ( 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑦 ∈ ℤ )
15 14 zcnd ( 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑦 ∈ ℂ )
16 15 1 eleq2s ( 𝑦𝐸𝑦 ∈ ℂ )
17 16 adantl ( ( 𝑥𝐸𝑦𝐸 ) → 𝑦 ∈ ℂ )
18 13 17 addcomd ( ( 𝑥𝐸𝑦𝐸 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) )
19 18 3adant1 ( ( 0 ∈ 𝐸𝑥𝐸𝑦𝐸 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) )
20 5 7 9 19 iscmnd ( 0 ∈ 𝐸𝑅 ∈ CMnd )
21 3 20 ax-mp 𝑅 ∈ CMnd