| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2zrng.e | ⊢ 𝐸  =  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } | 
						
							| 2 |  | 2zrngbas.r | ⊢ 𝑅  =  ( ℂfld  ↾s  𝐸 ) | 
						
							| 3 | 1 | 0even | ⊢ 0  ∈  𝐸 | 
						
							| 4 | 1 2 | 2zrngbas | ⊢ 𝐸  =  ( Base ‘ 𝑅 ) | 
						
							| 5 | 4 | a1i | ⊢ ( 0  ∈  𝐸  →  𝐸  =  ( Base ‘ 𝑅 ) ) | 
						
							| 6 | 1 2 | 2zrngadd | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 7 | 6 | a1i | ⊢ ( 0  ∈  𝐸  →   +   =  ( +g ‘ 𝑅 ) ) | 
						
							| 8 | 1 2 | 2zrngamnd | ⊢ 𝑅  ∈  Mnd | 
						
							| 9 | 8 | a1i | ⊢ ( 0  ∈  𝐸  →  𝑅  ∈  Mnd ) | 
						
							| 10 |  | elrabi | ⊢ ( 𝑥  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑥  ∈  ℤ ) | 
						
							| 11 | 10 | zcnd | ⊢ ( 𝑥  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑥  ∈  ℂ ) | 
						
							| 12 | 11 1 | eleq2s | ⊢ ( 𝑥  ∈  𝐸  →  𝑥  ∈  ℂ ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐸 )  →  𝑥  ∈  ℂ ) | 
						
							| 14 |  | elrabi | ⊢ ( 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑦  ∈  ℤ ) | 
						
							| 15 | 14 | zcnd | ⊢ ( 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑦  ∈  ℂ ) | 
						
							| 16 | 15 1 | eleq2s | ⊢ ( 𝑦  ∈  𝐸  →  𝑦  ∈  ℂ ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐸 )  →  𝑦  ∈  ℂ ) | 
						
							| 18 | 13 17 | addcomd | ⊢ ( ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐸 )  →  ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 19 | 18 | 3adant1 | ⊢ ( ( 0  ∈  𝐸  ∧  𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐸 )  →  ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 20 | 5 7 9 19 | iscmnd | ⊢ ( 0  ∈  𝐸  →  𝑅  ∈  CMnd ) | 
						
							| 21 | 3 20 | ax-mp | ⊢ 𝑅  ∈  CMnd |