| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2zrng.e | ⊢ 𝐸  =  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } | 
						
							| 2 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 3 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 4 |  | 0zd | ⊢ ( 2  ∈  ℂ  →  0  ∈  ℤ ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑥  =  0  →  ( 2  ·  𝑥 )  =  ( 2  ·  0 ) ) | 
						
							| 6 | 5 | eqeq2d | ⊢ ( 𝑥  =  0  →  ( 0  =  ( 2  ·  𝑥 )  ↔  0  =  ( 2  ·  0 ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 2  ∈  ℂ  ∧  𝑥  =  0 )  →  ( 0  =  ( 2  ·  𝑥 )  ↔  0  =  ( 2  ·  0 ) ) ) | 
						
							| 8 |  | mul01 | ⊢ ( 2  ∈  ℂ  →  ( 2  ·  0 )  =  0 ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( 2  ∈  ℂ  →  0  =  ( 2  ·  0 ) ) | 
						
							| 10 | 4 7 9 | rspcedvd | ⊢ ( 2  ∈  ℂ  →  ∃ 𝑥  ∈  ℤ 0  =  ( 2  ·  𝑥 ) ) | 
						
							| 11 | 3 10 | ax-mp | ⊢ ∃ 𝑥  ∈  ℤ 0  =  ( 2  ·  𝑥 ) | 
						
							| 12 |  | eqeq1 | ⊢ ( 𝑧  =  0  →  ( 𝑧  =  ( 2  ·  𝑥 )  ↔  0  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 13 | 12 | rexbidv | ⊢ ( 𝑧  =  0  →  ( ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 )  ↔  ∃ 𝑥  ∈  ℤ 0  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 14 | 13 | elrab | ⊢ ( 0  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  ↔  ( 0  ∈  ℤ  ∧  ∃ 𝑥  ∈  ℤ 0  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 15 | 2 11 14 | mpbir2an | ⊢ 0  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } | 
						
							| 16 | 15 1 | eleqtrri | ⊢ 0  ∈  𝐸 |