Metamath Proof Explorer


Theorem 0even

Description: 0 is an even integer. (Contributed by AV, 11-Feb-2020)

Ref Expression
Hypothesis 2zrng.e E=z|xz=2x
Assertion 0even 0E

Proof

Step Hyp Ref Expression
1 2zrng.e E=z|xz=2x
2 0z 0
3 2cn 2
4 0zd 20
5 oveq2 x=02x=20
6 5 eqeq2d x=00=2x0=20
7 6 adantl 2x=00=2x0=20
8 mul01 220=0
9 8 eqcomd 20=20
10 4 7 9 rspcedvd 2x0=2x
11 3 10 ax-mp x0=2x
12 eqeq1 z=0z=2x0=2x
13 12 rexbidv z=0xz=2xx0=2x
14 13 elrab 0z|xz=2x0x0=2x
15 2 11 14 mpbir2an 0z|xz=2x
16 15 1 eleqtrri 0E