Metamath Proof Explorer


Theorem 2zrngacmnd

Description: R is a commutative (additive) monoid. (Contributed by AV, 11-Feb-2020)

Ref Expression
Hypotheses 2zrng.e E = z | x z = 2 x
2zrngbas.r R = fld 𝑠 E
Assertion 2zrngacmnd R CMnd

Proof

Step Hyp Ref Expression
1 2zrng.e E = z | x z = 2 x
2 2zrngbas.r R = fld 𝑠 E
3 1 0even 0 E
4 1 2 2zrngbas E = Base R
5 4 a1i 0 E E = Base R
6 1 2 2zrngadd + = + R
7 6 a1i 0 E + = + R
8 1 2 2zrngamnd R Mnd
9 8 a1i 0 E R Mnd
10 elrabi x z | x z = 2 x x
11 10 zcnd x z | x z = 2 x x
12 11 1 eleq2s x E x
13 12 adantr x E y E x
14 elrabi y z | x z = 2 x y
15 14 zcnd y z | x z = 2 x y
16 15 1 eleq2s y E y
17 16 adantl x E y E y
18 13 17 addcomd x E y E x + y = y + x
19 18 3adant1 0 E x E y E x + y = y + x
20 5 7 9 19 iscmnd 0 E R CMnd
21 3 20 ax-mp R CMnd