Step |
Hyp |
Ref |
Expression |
1 |
|
2zrng.e |
⊢ 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } |
2 |
|
2zrngbas.r |
⊢ 𝑅 = ( ℂfld ↾s 𝐸 ) |
3 |
1 2
|
2zrngamnd |
⊢ 𝑅 ∈ Mnd |
4 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 = ( 2 · 𝑥 ) ↔ 𝑦 = ( 2 · 𝑥 ) ) ) |
5 |
4
|
rexbidv |
⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℤ 𝑦 = ( 2 · 𝑥 ) ) ) |
6 |
5 1
|
elrab2 |
⊢ ( 𝑦 ∈ 𝐸 ↔ ( 𝑦 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 𝑦 = ( 2 · 𝑥 ) ) ) |
7 |
|
znegcl |
⊢ ( 𝑦 ∈ ℤ → - 𝑦 ∈ ℤ ) |
8 |
7
|
adantr |
⊢ ( ( 𝑦 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 𝑦 = ( 2 · 𝑥 ) ) → - 𝑦 ∈ ℤ ) |
9 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ ℤ |
10 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ ℤ - 𝑦 = ( 2 · 𝑥 ) |
11 |
|
znegcl |
⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) |
12 |
11
|
adantl |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → - 𝑥 ∈ ℤ ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 = ( 2 · 𝑥 ) ) → - 𝑥 ∈ ℤ ) |
14 |
|
oveq2 |
⊢ ( 𝑧 = - 𝑥 → ( 2 · 𝑧 ) = ( 2 · - 𝑥 ) ) |
15 |
14
|
eqeq2d |
⊢ ( 𝑧 = - 𝑥 → ( - 𝑦 = ( 2 · 𝑧 ) ↔ - 𝑦 = ( 2 · - 𝑥 ) ) ) |
16 |
15
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 = ( 2 · 𝑥 ) ) ∧ 𝑧 = - 𝑥 ) → ( - 𝑦 = ( 2 · 𝑧 ) ↔ - 𝑦 = ( 2 · - 𝑥 ) ) ) |
17 |
|
negeq |
⊢ ( 𝑦 = ( 2 · 𝑥 ) → - 𝑦 = - ( 2 · 𝑥 ) ) |
18 |
|
2cnd |
⊢ ( 𝑥 ∈ ℤ → 2 ∈ ℂ ) |
19 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
20 |
18 19
|
mulneg2d |
⊢ ( 𝑥 ∈ ℤ → ( 2 · - 𝑥 ) = - ( 2 · 𝑥 ) ) |
21 |
20
|
eqcomd |
⊢ ( 𝑥 ∈ ℤ → - ( 2 · 𝑥 ) = ( 2 · - 𝑥 ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → - ( 2 · 𝑥 ) = ( 2 · - 𝑥 ) ) |
23 |
17 22
|
sylan9eqr |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 = ( 2 · 𝑥 ) ) → - 𝑦 = ( 2 · - 𝑥 ) ) |
24 |
13 16 23
|
rspcedvd |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 = ( 2 · 𝑥 ) ) → ∃ 𝑧 ∈ ℤ - 𝑦 = ( 2 · 𝑧 ) ) |
25 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 2 · 𝑥 ) = ( 2 · 𝑧 ) ) |
26 |
25
|
eqeq2d |
⊢ ( 𝑥 = 𝑧 → ( - 𝑦 = ( 2 · 𝑥 ) ↔ - 𝑦 = ( 2 · 𝑧 ) ) ) |
27 |
26
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ ℤ - 𝑦 = ( 2 · 𝑥 ) ↔ ∃ 𝑧 ∈ ℤ - 𝑦 = ( 2 · 𝑧 ) ) |
28 |
24 27
|
sylibr |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ∧ 𝑦 = ( 2 · 𝑥 ) ) → ∃ 𝑥 ∈ ℤ - 𝑦 = ( 2 · 𝑥 ) ) |
29 |
28
|
exp31 |
⊢ ( 𝑦 ∈ ℤ → ( 𝑥 ∈ ℤ → ( 𝑦 = ( 2 · 𝑥 ) → ∃ 𝑥 ∈ ℤ - 𝑦 = ( 2 · 𝑥 ) ) ) ) |
30 |
9 10 29
|
rexlimd |
⊢ ( 𝑦 ∈ ℤ → ( ∃ 𝑥 ∈ ℤ 𝑦 = ( 2 · 𝑥 ) → ∃ 𝑥 ∈ ℤ - 𝑦 = ( 2 · 𝑥 ) ) ) |
31 |
30
|
imp |
⊢ ( ( 𝑦 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 𝑦 = ( 2 · 𝑥 ) ) → ∃ 𝑥 ∈ ℤ - 𝑦 = ( 2 · 𝑥 ) ) |
32 |
|
eqeq1 |
⊢ ( 𝑧 = - 𝑦 → ( 𝑧 = ( 2 · 𝑥 ) ↔ - 𝑦 = ( 2 · 𝑥 ) ) ) |
33 |
32
|
rexbidv |
⊢ ( 𝑧 = - 𝑦 → ( ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℤ - 𝑦 = ( 2 · 𝑥 ) ) ) |
34 |
33 1
|
elrab2 |
⊢ ( - 𝑦 ∈ 𝐸 ↔ ( - 𝑦 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ - 𝑦 = ( 2 · 𝑥 ) ) ) |
35 |
8 31 34
|
sylanbrc |
⊢ ( ( 𝑦 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 𝑦 = ( 2 · 𝑥 ) ) → - 𝑦 ∈ 𝐸 ) |
36 |
6 35
|
sylbi |
⊢ ( 𝑦 ∈ 𝐸 → - 𝑦 ∈ 𝐸 ) |
37 |
|
oveq1 |
⊢ ( 𝑧 = - 𝑦 → ( 𝑧 + 𝑦 ) = ( - 𝑦 + 𝑦 ) ) |
38 |
37
|
eqeq1d |
⊢ ( 𝑧 = - 𝑦 → ( ( 𝑧 + 𝑦 ) = 0 ↔ ( - 𝑦 + 𝑦 ) = 0 ) ) |
39 |
38
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐸 ∧ 𝑧 = - 𝑦 ) → ( ( 𝑧 + 𝑦 ) = 0 ↔ ( - 𝑦 + 𝑦 ) = 0 ) ) |
40 |
|
elrabi |
⊢ ( 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑦 ∈ ℤ ) |
41 |
40 1
|
eleq2s |
⊢ ( 𝑦 ∈ 𝐸 → 𝑦 ∈ ℤ ) |
42 |
41
|
zcnd |
⊢ ( 𝑦 ∈ 𝐸 → 𝑦 ∈ ℂ ) |
43 |
42
|
negcld |
⊢ ( 𝑦 ∈ 𝐸 → - 𝑦 ∈ ℂ ) |
44 |
43 42
|
addcomd |
⊢ ( 𝑦 ∈ 𝐸 → ( - 𝑦 + 𝑦 ) = ( 𝑦 + - 𝑦 ) ) |
45 |
42
|
negidd |
⊢ ( 𝑦 ∈ 𝐸 → ( 𝑦 + - 𝑦 ) = 0 ) |
46 |
44 45
|
eqtrd |
⊢ ( 𝑦 ∈ 𝐸 → ( - 𝑦 + 𝑦 ) = 0 ) |
47 |
36 39 46
|
rspcedvd |
⊢ ( 𝑦 ∈ 𝐸 → ∃ 𝑧 ∈ 𝐸 ( 𝑧 + 𝑦 ) = 0 ) |
48 |
47
|
rgen |
⊢ ∀ 𝑦 ∈ 𝐸 ∃ 𝑧 ∈ 𝐸 ( 𝑧 + 𝑦 ) = 0 |
49 |
1 2
|
2zrngbas |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
50 |
1 2
|
2zrngadd |
⊢ + = ( +g ‘ 𝑅 ) |
51 |
1 2
|
2zrng0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
52 |
49 50 51
|
isgrp |
⊢ ( 𝑅 ∈ Grp ↔ ( 𝑅 ∈ Mnd ∧ ∀ 𝑦 ∈ 𝐸 ∃ 𝑧 ∈ 𝐸 ( 𝑧 + 𝑦 ) = 0 ) ) |
53 |
3 48 52
|
mpbir2an |
⊢ 𝑅 ∈ Grp |