| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2zrng.e |
|- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } |
| 2 |
|
2zrngbas.r |
|- R = ( CCfld |`s E ) |
| 3 |
1 2
|
2zrngamnd |
|- R e. Mnd |
| 4 |
|
eqeq1 |
|- ( z = y -> ( z = ( 2 x. x ) <-> y = ( 2 x. x ) ) ) |
| 5 |
4
|
rexbidv |
|- ( z = y -> ( E. x e. ZZ z = ( 2 x. x ) <-> E. x e. ZZ y = ( 2 x. x ) ) ) |
| 6 |
5 1
|
elrab2 |
|- ( y e. E <-> ( y e. ZZ /\ E. x e. ZZ y = ( 2 x. x ) ) ) |
| 7 |
|
znegcl |
|- ( y e. ZZ -> -u y e. ZZ ) |
| 8 |
7
|
adantr |
|- ( ( y e. ZZ /\ E. x e. ZZ y = ( 2 x. x ) ) -> -u y e. ZZ ) |
| 9 |
|
nfv |
|- F/ x y e. ZZ |
| 10 |
|
nfre1 |
|- F/ x E. x e. ZZ -u y = ( 2 x. x ) |
| 11 |
|
znegcl |
|- ( x e. ZZ -> -u x e. ZZ ) |
| 12 |
11
|
adantl |
|- ( ( y e. ZZ /\ x e. ZZ ) -> -u x e. ZZ ) |
| 13 |
12
|
adantr |
|- ( ( ( y e. ZZ /\ x e. ZZ ) /\ y = ( 2 x. x ) ) -> -u x e. ZZ ) |
| 14 |
|
oveq2 |
|- ( z = -u x -> ( 2 x. z ) = ( 2 x. -u x ) ) |
| 15 |
14
|
eqeq2d |
|- ( z = -u x -> ( -u y = ( 2 x. z ) <-> -u y = ( 2 x. -u x ) ) ) |
| 16 |
15
|
adantl |
|- ( ( ( ( y e. ZZ /\ x e. ZZ ) /\ y = ( 2 x. x ) ) /\ z = -u x ) -> ( -u y = ( 2 x. z ) <-> -u y = ( 2 x. -u x ) ) ) |
| 17 |
|
negeq |
|- ( y = ( 2 x. x ) -> -u y = -u ( 2 x. x ) ) |
| 18 |
|
2cnd |
|- ( x e. ZZ -> 2 e. CC ) |
| 19 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
| 20 |
18 19
|
mulneg2d |
|- ( x e. ZZ -> ( 2 x. -u x ) = -u ( 2 x. x ) ) |
| 21 |
20
|
eqcomd |
|- ( x e. ZZ -> -u ( 2 x. x ) = ( 2 x. -u x ) ) |
| 22 |
21
|
adantl |
|- ( ( y e. ZZ /\ x e. ZZ ) -> -u ( 2 x. x ) = ( 2 x. -u x ) ) |
| 23 |
17 22
|
sylan9eqr |
|- ( ( ( y e. ZZ /\ x e. ZZ ) /\ y = ( 2 x. x ) ) -> -u y = ( 2 x. -u x ) ) |
| 24 |
13 16 23
|
rspcedvd |
|- ( ( ( y e. ZZ /\ x e. ZZ ) /\ y = ( 2 x. x ) ) -> E. z e. ZZ -u y = ( 2 x. z ) ) |
| 25 |
|
oveq2 |
|- ( x = z -> ( 2 x. x ) = ( 2 x. z ) ) |
| 26 |
25
|
eqeq2d |
|- ( x = z -> ( -u y = ( 2 x. x ) <-> -u y = ( 2 x. z ) ) ) |
| 27 |
26
|
cbvrexvw |
|- ( E. x e. ZZ -u y = ( 2 x. x ) <-> E. z e. ZZ -u y = ( 2 x. z ) ) |
| 28 |
24 27
|
sylibr |
|- ( ( ( y e. ZZ /\ x e. ZZ ) /\ y = ( 2 x. x ) ) -> E. x e. ZZ -u y = ( 2 x. x ) ) |
| 29 |
28
|
exp31 |
|- ( y e. ZZ -> ( x e. ZZ -> ( y = ( 2 x. x ) -> E. x e. ZZ -u y = ( 2 x. x ) ) ) ) |
| 30 |
9 10 29
|
rexlimd |
|- ( y e. ZZ -> ( E. x e. ZZ y = ( 2 x. x ) -> E. x e. ZZ -u y = ( 2 x. x ) ) ) |
| 31 |
30
|
imp |
|- ( ( y e. ZZ /\ E. x e. ZZ y = ( 2 x. x ) ) -> E. x e. ZZ -u y = ( 2 x. x ) ) |
| 32 |
|
eqeq1 |
|- ( z = -u y -> ( z = ( 2 x. x ) <-> -u y = ( 2 x. x ) ) ) |
| 33 |
32
|
rexbidv |
|- ( z = -u y -> ( E. x e. ZZ z = ( 2 x. x ) <-> E. x e. ZZ -u y = ( 2 x. x ) ) ) |
| 34 |
33 1
|
elrab2 |
|- ( -u y e. E <-> ( -u y e. ZZ /\ E. x e. ZZ -u y = ( 2 x. x ) ) ) |
| 35 |
8 31 34
|
sylanbrc |
|- ( ( y e. ZZ /\ E. x e. ZZ y = ( 2 x. x ) ) -> -u y e. E ) |
| 36 |
6 35
|
sylbi |
|- ( y e. E -> -u y e. E ) |
| 37 |
|
oveq1 |
|- ( z = -u y -> ( z + y ) = ( -u y + y ) ) |
| 38 |
37
|
eqeq1d |
|- ( z = -u y -> ( ( z + y ) = 0 <-> ( -u y + y ) = 0 ) ) |
| 39 |
38
|
adantl |
|- ( ( y e. E /\ z = -u y ) -> ( ( z + y ) = 0 <-> ( -u y + y ) = 0 ) ) |
| 40 |
|
elrabi |
|- ( y e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } -> y e. ZZ ) |
| 41 |
40 1
|
eleq2s |
|- ( y e. E -> y e. ZZ ) |
| 42 |
41
|
zcnd |
|- ( y e. E -> y e. CC ) |
| 43 |
42
|
negcld |
|- ( y e. E -> -u y e. CC ) |
| 44 |
43 42
|
addcomd |
|- ( y e. E -> ( -u y + y ) = ( y + -u y ) ) |
| 45 |
42
|
negidd |
|- ( y e. E -> ( y + -u y ) = 0 ) |
| 46 |
44 45
|
eqtrd |
|- ( y e. E -> ( -u y + y ) = 0 ) |
| 47 |
36 39 46
|
rspcedvd |
|- ( y e. E -> E. z e. E ( z + y ) = 0 ) |
| 48 |
47
|
rgen |
|- A. y e. E E. z e. E ( z + y ) = 0 |
| 49 |
1 2
|
2zrngbas |
|- E = ( Base ` R ) |
| 50 |
1 2
|
2zrngadd |
|- + = ( +g ` R ) |
| 51 |
1 2
|
2zrng0 |
|- 0 = ( 0g ` R ) |
| 52 |
49 50 51
|
isgrp |
|- ( R e. Grp <-> ( R e. Mnd /\ A. y e. E E. z e. E ( z + y ) = 0 ) ) |
| 53 |
3 48 52
|
mpbir2an |
|- R e. Grp |