Metamath Proof Explorer


Theorem 2zrngamnd

Description: R is an (additive) monoid. (Contributed by AV, 11-Feb-2020)

Ref Expression
Hypotheses 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
Assertion 2zrngamnd 𝑅 ∈ Mnd

Proof

Step Hyp Ref Expression
1 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2 2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
3 1 2 2zrngasgrp 𝑅 ∈ Smgrp
4 1 0even 0 ∈ 𝐸
5 id ( 0 ∈ 𝐸 → 0 ∈ 𝐸 )
6 oveq1 ( 𝑥 = 0 → ( 𝑥 + 𝑦 ) = ( 0 + 𝑦 ) )
7 6 eqeq1d ( 𝑥 = 0 → ( ( 𝑥 + 𝑦 ) = 𝑦 ↔ ( 0 + 𝑦 ) = 𝑦 ) )
8 7 ovanraleqv ( 𝑥 = 0 → ( ∀ 𝑦𝐸 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦𝐸 ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) ) )
9 8 adantl ( ( 0 ∈ 𝐸𝑥 = 0 ) → ( ∀ 𝑦𝐸 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦𝐸 ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) ) )
10 elrabi ( 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑦 ∈ ℤ )
11 10 1 eleq2s ( 𝑦𝐸𝑦 ∈ ℤ )
12 11 zcnd ( 𝑦𝐸𝑦 ∈ ℂ )
13 addid2 ( 𝑦 ∈ ℂ → ( 0 + 𝑦 ) = 𝑦 )
14 addid1 ( 𝑦 ∈ ℂ → ( 𝑦 + 0 ) = 𝑦 )
15 13 14 jca ( 𝑦 ∈ ℂ → ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) )
16 12 15 syl ( 𝑦𝐸 → ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) )
17 16 adantl ( ( 0 ∈ 𝐸𝑦𝐸 ) → ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) )
18 17 ralrimiva ( 0 ∈ 𝐸 → ∀ 𝑦𝐸 ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) )
19 5 9 18 rspcedvd ( 0 ∈ 𝐸 → ∃ 𝑥𝐸𝑦𝐸 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) )
20 4 19 ax-mp 𝑥𝐸𝑦𝐸 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 )
21 1 2 2zrngbas 𝐸 = ( Base ‘ 𝑅 )
22 1 2 2zrngadd + = ( +g𝑅 )
23 21 22 ismnddef ( 𝑅 ∈ Mnd ↔ ( 𝑅 ∈ Smgrp ∧ ∃ 𝑥𝐸𝑦𝐸 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) )
24 3 20 23 mpbir2an 𝑅 ∈ Mnd