Step |
Hyp |
Ref |
Expression |
1 |
|
2zrng.e |
⊢ 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } |
2 |
|
2zrngbas.r |
⊢ 𝑅 = ( ℂfld ↾s 𝐸 ) |
3 |
1 2
|
2zrngasgrp |
⊢ 𝑅 ∈ Smgrp |
4 |
1
|
0even |
⊢ 0 ∈ 𝐸 |
5 |
|
id |
⊢ ( 0 ∈ 𝐸 → 0 ∈ 𝐸 ) |
6 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 + 𝑦 ) = ( 0 + 𝑦 ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 + 𝑦 ) = 𝑦 ↔ ( 0 + 𝑦 ) = 𝑦 ) ) |
8 |
7
|
ovanraleqv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑦 ∈ 𝐸 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐸 ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) ) ) |
9 |
8
|
adantl |
⊢ ( ( 0 ∈ 𝐸 ∧ 𝑥 = 0 ) → ( ∀ 𝑦 ∈ 𝐸 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐸 ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) ) ) |
10 |
|
elrabi |
⊢ ( 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑦 ∈ ℤ ) |
11 |
10 1
|
eleq2s |
⊢ ( 𝑦 ∈ 𝐸 → 𝑦 ∈ ℤ ) |
12 |
11
|
zcnd |
⊢ ( 𝑦 ∈ 𝐸 → 𝑦 ∈ ℂ ) |
13 |
|
addid2 |
⊢ ( 𝑦 ∈ ℂ → ( 0 + 𝑦 ) = 𝑦 ) |
14 |
|
addid1 |
⊢ ( 𝑦 ∈ ℂ → ( 𝑦 + 0 ) = 𝑦 ) |
15 |
13 14
|
jca |
⊢ ( 𝑦 ∈ ℂ → ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) ) |
16 |
12 15
|
syl |
⊢ ( 𝑦 ∈ 𝐸 → ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) ) |
17 |
16
|
adantl |
⊢ ( ( 0 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸 ) → ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) ) |
18 |
17
|
ralrimiva |
⊢ ( 0 ∈ 𝐸 → ∀ 𝑦 ∈ 𝐸 ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) ) |
19 |
5 9 18
|
rspcedvd |
⊢ ( 0 ∈ 𝐸 → ∃ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) |
20 |
4 19
|
ax-mp |
⊢ ∃ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) |
21 |
1 2
|
2zrngbas |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
22 |
1 2
|
2zrngadd |
⊢ + = ( +g ‘ 𝑅 ) |
23 |
21 22
|
ismnddef |
⊢ ( 𝑅 ∈ Mnd ↔ ( 𝑅 ∈ Smgrp ∧ ∃ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) |
24 |
3 20 23
|
mpbir2an |
⊢ 𝑅 ∈ Mnd |