| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2zrng.e | ⊢ 𝐸  =  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } | 
						
							| 2 |  | 2zrngbas.r | ⊢ 𝑅  =  ( ℂfld  ↾s  𝐸 ) | 
						
							| 3 | 1 2 | 2zrngasgrp | ⊢ 𝑅  ∈  Smgrp | 
						
							| 4 | 1 | 0even | ⊢ 0  ∈  𝐸 | 
						
							| 5 |  | id | ⊢ ( 0  ∈  𝐸  →  0  ∈  𝐸 ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  +  𝑦 )  =  ( 0  +  𝑦 ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝑥  =  0  →  ( ( 𝑥  +  𝑦 )  =  𝑦  ↔  ( 0  +  𝑦 )  =  𝑦 ) ) | 
						
							| 8 | 7 | ovanraleqv | ⊢ ( 𝑥  =  0  →  ( ∀ 𝑦  ∈  𝐸 ( ( 𝑥  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑥 )  =  𝑦 )  ↔  ∀ 𝑦  ∈  𝐸 ( ( 0  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  0 )  =  𝑦 ) ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 0  ∈  𝐸  ∧  𝑥  =  0 )  →  ( ∀ 𝑦  ∈  𝐸 ( ( 𝑥  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑥 )  =  𝑦 )  ↔  ∀ 𝑦  ∈  𝐸 ( ( 0  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  0 )  =  𝑦 ) ) ) | 
						
							| 10 |  | elrabi | ⊢ ( 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑦  ∈  ℤ ) | 
						
							| 11 | 10 1 | eleq2s | ⊢ ( 𝑦  ∈  𝐸  →  𝑦  ∈  ℤ ) | 
						
							| 12 | 11 | zcnd | ⊢ ( 𝑦  ∈  𝐸  →  𝑦  ∈  ℂ ) | 
						
							| 13 |  | addlid | ⊢ ( 𝑦  ∈  ℂ  →  ( 0  +  𝑦 )  =  𝑦 ) | 
						
							| 14 |  | addrid | ⊢ ( 𝑦  ∈  ℂ  →  ( 𝑦  +  0 )  =  𝑦 ) | 
						
							| 15 | 13 14 | jca | ⊢ ( 𝑦  ∈  ℂ  →  ( ( 0  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  0 )  =  𝑦 ) ) | 
						
							| 16 | 12 15 | syl | ⊢ ( 𝑦  ∈  𝐸  →  ( ( 0  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  0 )  =  𝑦 ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 0  ∈  𝐸  ∧  𝑦  ∈  𝐸 )  →  ( ( 0  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  0 )  =  𝑦 ) ) | 
						
							| 18 | 17 | ralrimiva | ⊢ ( 0  ∈  𝐸  →  ∀ 𝑦  ∈  𝐸 ( ( 0  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  0 )  =  𝑦 ) ) | 
						
							| 19 | 5 9 18 | rspcedvd | ⊢ ( 0  ∈  𝐸  →  ∃ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐸 ( ( 𝑥  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑥 )  =  𝑦 ) ) | 
						
							| 20 | 4 19 | ax-mp | ⊢ ∃ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐸 ( ( 𝑥  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑥 )  =  𝑦 ) | 
						
							| 21 | 1 2 | 2zrngbas | ⊢ 𝐸  =  ( Base ‘ 𝑅 ) | 
						
							| 22 | 1 2 | 2zrngadd | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 23 | 21 22 | ismnddef | ⊢ ( 𝑅  ∈  Mnd  ↔  ( 𝑅  ∈  Smgrp  ∧  ∃ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐸 ( ( 𝑥  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑥 )  =  𝑦 ) ) ) | 
						
							| 24 | 3 20 23 | mpbir2an | ⊢ 𝑅  ∈  Mnd |