Metamath Proof Explorer


Theorem 2zrngasgrp

Description: R is an (additive) semigroup. (Contributed by AV, 4-Feb-2020)

Ref Expression
Hypotheses 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
Assertion 2zrngasgrp 𝑅 ∈ Smgrp

Proof

Step Hyp Ref Expression
1 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2 2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
3 1 2 2zrngamgm 𝑅 ∈ Mgm
4 elrabi ( 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑎 ∈ ℤ )
5 elrabi ( 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑦 ∈ ℤ )
6 elrabi ( 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑏 ∈ ℤ )
7 4 5 6 3anim123i ( ( 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∧ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∧ 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ) → ( 𝑎 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ) )
8 zcn ( 𝑎 ∈ ℤ → 𝑎 ∈ ℂ )
9 zcn ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ )
10 zcn ( 𝑏 ∈ ℤ → 𝑏 ∈ ℂ )
11 8 9 10 3anim123i ( ( 𝑎 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑏 ∈ ℂ ) )
12 addass ( ( 𝑎 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( ( 𝑎 + 𝑦 ) + 𝑏 ) = ( 𝑎 + ( 𝑦 + 𝑏 ) ) )
13 7 11 12 3syl ( ( 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∧ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∧ 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ) → ( ( 𝑎 + 𝑦 ) + 𝑏 ) = ( 𝑎 + ( 𝑦 + 𝑏 ) ) )
14 13 rgen3 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∀ 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ( ( 𝑎 + 𝑦 ) + 𝑏 ) = ( 𝑎 + ( 𝑦 + 𝑏 ) )
15 1 2 2zrngbas 𝐸 = ( Base ‘ 𝑅 )
16 1 15 eqtr3i { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } = ( Base ‘ 𝑅 )
17 1 2 2zrngadd + = ( +g𝑅 )
18 16 17 issgrp ( 𝑅 ∈ Smgrp ↔ ( 𝑅 ∈ Mgm ∧ ∀ 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∀ 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ( ( 𝑎 + 𝑦 ) + 𝑏 ) = ( 𝑎 + ( 𝑦 + 𝑏 ) ) ) )
19 3 14 18 mpbir2an 𝑅 ∈ Smgrp