Step |
Hyp |
Ref |
Expression |
1 |
|
2zrng.e |
⊢ 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } |
2 |
|
2zrngbas.r |
⊢ 𝑅 = ( ℂfld ↾s 𝐸 ) |
3 |
1 2
|
2zrngamgm |
⊢ 𝑅 ∈ Mgm |
4 |
|
elrabi |
⊢ ( 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑎 ∈ ℤ ) |
5 |
|
elrabi |
⊢ ( 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑦 ∈ ℤ ) |
6 |
|
elrabi |
⊢ ( 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑏 ∈ ℤ ) |
7 |
4 5 6
|
3anim123i |
⊢ ( ( 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∧ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∧ 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ) → ( 𝑎 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) |
8 |
|
zcn |
⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℂ ) |
9 |
|
zcn |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) |
10 |
|
zcn |
⊢ ( 𝑏 ∈ ℤ → 𝑏 ∈ ℂ ) |
11 |
8 9 10
|
3anim123i |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑏 ∈ ℂ ) ) |
12 |
|
addass |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( ( 𝑎 + 𝑦 ) + 𝑏 ) = ( 𝑎 + ( 𝑦 + 𝑏 ) ) ) |
13 |
7 11 12
|
3syl |
⊢ ( ( 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∧ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∧ 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ) → ( ( 𝑎 + 𝑦 ) + 𝑏 ) = ( 𝑎 + ( 𝑦 + 𝑏 ) ) ) |
14 |
13
|
rgen3 |
⊢ ∀ 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∀ 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ( ( 𝑎 + 𝑦 ) + 𝑏 ) = ( 𝑎 + ( 𝑦 + 𝑏 ) ) |
15 |
1 2
|
2zrngbas |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
16 |
1 15
|
eqtr3i |
⊢ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } = ( Base ‘ 𝑅 ) |
17 |
1 2
|
2zrngadd |
⊢ + = ( +g ‘ 𝑅 ) |
18 |
16 17
|
issgrp |
⊢ ( 𝑅 ∈ Smgrp ↔ ( 𝑅 ∈ Mgm ∧ ∀ 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ∀ 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ( ( 𝑎 + 𝑦 ) + 𝑏 ) = ( 𝑎 + ( 𝑦 + 𝑏 ) ) ) ) |
19 |
3 14 18
|
mpbir2an |
⊢ 𝑅 ∈ Smgrp |