| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2zrng.e | ⊢ 𝐸  =  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } | 
						
							| 2 |  | 2zrngbas.r | ⊢ 𝑅  =  ( ℂfld  ↾s  𝐸 ) | 
						
							| 3 | 1 2 | 2zrngamgm | ⊢ 𝑅  ∈  Mgm | 
						
							| 4 |  | elrabi | ⊢ ( 𝑎  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑎  ∈  ℤ ) | 
						
							| 5 |  | elrabi | ⊢ ( 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑦  ∈  ℤ ) | 
						
							| 6 |  | elrabi | ⊢ ( 𝑏  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑏  ∈  ℤ ) | 
						
							| 7 | 4 5 6 | 3anim123i | ⊢ ( ( 𝑎  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  ∧  𝑦  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  ∧  𝑏  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } )  →  ( 𝑎  ∈  ℤ  ∧  𝑦  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) | 
						
							| 8 |  | zcn | ⊢ ( 𝑎  ∈  ℤ  →  𝑎  ∈  ℂ ) | 
						
							| 9 |  | zcn | ⊢ ( 𝑦  ∈  ℤ  →  𝑦  ∈  ℂ ) | 
						
							| 10 |  | zcn | ⊢ ( 𝑏  ∈  ℤ  →  𝑏  ∈  ℂ ) | 
						
							| 11 | 8 9 10 | 3anim123i | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑦  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( 𝑎  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑏  ∈  ℂ ) ) | 
						
							| 12 |  | addass | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( ( 𝑎  +  𝑦 )  +  𝑏 )  =  ( 𝑎  +  ( 𝑦  +  𝑏 ) ) ) | 
						
							| 13 | 7 11 12 | 3syl | ⊢ ( ( 𝑎  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  ∧  𝑦  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  ∧  𝑏  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } )  →  ( ( 𝑎  +  𝑦 )  +  𝑏 )  =  ( 𝑎  +  ( 𝑦  +  𝑏 ) ) ) | 
						
							| 14 | 13 | rgen3 | ⊢ ∀ 𝑎  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } ∀ 𝑏  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } ( ( 𝑎  +  𝑦 )  +  𝑏 )  =  ( 𝑎  +  ( 𝑦  +  𝑏 ) ) | 
						
							| 15 | 1 2 | 2zrngbas | ⊢ 𝐸  =  ( Base ‘ 𝑅 ) | 
						
							| 16 | 1 15 | eqtr3i | ⊢ { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  =  ( Base ‘ 𝑅 ) | 
						
							| 17 | 1 2 | 2zrngadd | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 18 | 16 17 | issgrp | ⊢ ( 𝑅  ∈  Smgrp  ↔  ( 𝑅  ∈  Mgm  ∧  ∀ 𝑎  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } ∀ 𝑏  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } ( ( 𝑎  +  𝑦 )  +  𝑏 )  =  ( 𝑎  +  ( 𝑦  +  𝑏 ) ) ) ) | 
						
							| 19 | 3 14 18 | mpbir2an | ⊢ 𝑅  ∈  Smgrp |