Metamath Proof Explorer


Theorem 2zrngasgrp

Description: R is an (additive) semigroup. (Contributed by AV, 4-Feb-2020)

Ref Expression
Hypotheses 2zrng.e E = z | x z = 2 x
2zrngbas.r R = fld 𝑠 E
Assertion 2zrngasgrp Could not format assertion : No typesetting found for |- R e. Smgrp with typecode |-

Proof

Step Hyp Ref Expression
1 2zrng.e E = z | x z = 2 x
2 2zrngbas.r R = fld 𝑠 E
3 1 2 2zrngamgm R Mgm
4 elrabi a z | x z = 2 x a
5 elrabi y z | x z = 2 x y
6 elrabi b z | x z = 2 x b
7 4 5 6 3anim123i a z | x z = 2 x y z | x z = 2 x b z | x z = 2 x a y b
8 zcn a a
9 zcn y y
10 zcn b b
11 8 9 10 3anim123i a y b a y b
12 addass a y b a + y + b = a + y + b
13 7 11 12 3syl a z | x z = 2 x y z | x z = 2 x b z | x z = 2 x a + y + b = a + y + b
14 13 rgen3 a z | x z = 2 x y z | x z = 2 x b z | x z = 2 x a + y + b = a + y + b
15 1 2 2zrngbas E = Base R
16 1 15 eqtr3i z | x z = 2 x = Base R
17 1 2 2zrngadd + = + R
18 16 17 issgrp Could not format ( R e. Smgrp <-> ( R e. Mgm /\ A. a e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. y e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. b e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } ( ( a + y ) + b ) = ( a + ( y + b ) ) ) ) : No typesetting found for |- ( R e. Smgrp <-> ( R e. Mgm /\ A. a e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. y e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. b e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } ( ( a + y ) + b ) = ( a + ( y + b ) ) ) ) with typecode |-
19 3 14 18 mpbir2an Could not format R e. Smgrp : No typesetting found for |- R e. Smgrp with typecode |-