Metamath Proof Explorer


Theorem 2zrngasgrp

Description: R is an (additive) semigroup. (Contributed by AV, 4-Feb-2020)

Ref Expression
Hypotheses 2zrng.e E=z|xz=2x
2zrngbas.r R=fld𝑠E
Assertion 2zrngasgrp Could not format assertion : No typesetting found for |- R e. Smgrp with typecode |-

Proof

Step Hyp Ref Expression
1 2zrng.e E=z|xz=2x
2 2zrngbas.r R=fld𝑠E
3 1 2 2zrngamgm RMgm
4 elrabi az|xz=2xa
5 elrabi yz|xz=2xy
6 elrabi bz|xz=2xb
7 4 5 6 3anim123i az|xz=2xyz|xz=2xbz|xz=2xayb
8 zcn aa
9 zcn yy
10 zcn bb
11 8 9 10 3anim123i aybayb
12 addass ayba+y+b=a+y+b
13 7 11 12 3syl az|xz=2xyz|xz=2xbz|xz=2xa+y+b=a+y+b
14 13 rgen3 az|xz=2xyz|xz=2xbz|xz=2xa+y+b=a+y+b
15 1 2 2zrngbas E=BaseR
16 1 15 eqtr3i z|xz=2x=BaseR
17 1 2 2zrngadd +=+R
18 16 17 issgrp Could not format ( R e. Smgrp <-> ( R e. Mgm /\ A. a e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. y e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. b e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } ( ( a + y ) + b ) = ( a + ( y + b ) ) ) ) : No typesetting found for |- ( R e. Smgrp <-> ( R e. Mgm /\ A. a e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. y e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } A. b e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } ( ( a + y ) + b ) = ( a + ( y + b ) ) ) ) with typecode |-
19 3 14 18 mpbir2an Could not format R e. Smgrp : No typesetting found for |- R e. Smgrp with typecode |-