| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2zrng.e |
⊢ 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } |
| 2 |
|
2zrngbas.r |
⊢ 𝑅 = ( ℂfld ↾s 𝐸 ) |
| 3 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑎 → ( 𝑧 = ( 2 · 𝑥 ) ↔ 𝑎 = ( 2 · 𝑥 ) ) ) |
| 4 |
3
|
rexbidv |
⊢ ( 𝑧 = 𝑎 → ( ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℤ 𝑎 = ( 2 · 𝑥 ) ) ) |
| 5 |
4 1
|
elrab2 |
⊢ ( 𝑎 ∈ 𝐸 ↔ ( 𝑎 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 𝑎 = ( 2 · 𝑥 ) ) ) |
| 6 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑏 → ( 𝑧 = ( 2 · 𝑥 ) ↔ 𝑏 = ( 2 · 𝑥 ) ) ) |
| 7 |
6
|
rexbidv |
⊢ ( 𝑧 = 𝑏 → ( ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℤ 𝑏 = ( 2 · 𝑥 ) ) ) |
| 8 |
7 1
|
elrab2 |
⊢ ( 𝑏 ∈ 𝐸 ↔ ( 𝑏 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 𝑏 = ( 2 · 𝑥 ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) |
| 10 |
9
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑎 = ( 2 · 𝑥 ) ↔ 𝑎 = ( 2 · 𝑦 ) ) ) |
| 11 |
10
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ ℤ 𝑎 = ( 2 · 𝑥 ) ↔ ∃ 𝑦 ∈ ℤ 𝑎 = ( 2 · 𝑦 ) ) |
| 12 |
|
zaddcl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 + 𝑏 ) ∈ ℤ ) |
| 13 |
12
|
ancoms |
⊢ ( ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) → ( 𝑎 + 𝑏 ) ∈ ℤ ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ∧ ( ∃ 𝑥 ∈ ℤ 𝑏 = ( 2 · 𝑥 ) ∧ ∃ 𝑦 ∈ ℤ 𝑎 = ( 2 · 𝑦 ) ) ) → ( 𝑎 + 𝑏 ) ∈ ℤ ) |
| 15 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) → 𝑦 ∈ ℤ ) |
| 16 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) → 𝑥 ∈ ℤ ) |
| 17 |
|
zaddcl |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑦 + 𝑥 ) ∈ ℤ ) |
| 18 |
15 16 17
|
syl2anr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) ) → ( 𝑦 + 𝑥 ) ∈ ℤ ) |
| 19 |
18
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) ) ∧ ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ) → ( 𝑦 + 𝑥 ) ∈ ℤ ) |
| 20 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑦 + 𝑥 ) → ( 2 · 𝑧 ) = ( 2 · ( 𝑦 + 𝑥 ) ) ) |
| 21 |
20
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑦 + 𝑥 ) → ( ( 2 · ( 𝑦 + 𝑥 ) ) = ( 2 · 𝑧 ) ↔ ( 2 · ( 𝑦 + 𝑥 ) ) = ( 2 · ( 𝑦 + 𝑥 ) ) ) ) |
| 22 |
21
|
adantl |
⊢ ( ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) ) ∧ ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑧 = ( 𝑦 + 𝑥 ) ) → ( ( 2 · ( 𝑦 + 𝑥 ) ) = ( 2 · 𝑧 ) ↔ ( 2 · ( 𝑦 + 𝑥 ) ) = ( 2 · ( 𝑦 + 𝑥 ) ) ) ) |
| 23 |
|
eqidd |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) ) ∧ ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ) → ( 2 · ( 𝑦 + 𝑥 ) ) = ( 2 · ( 𝑦 + 𝑥 ) ) ) |
| 24 |
19 22 23
|
rspcedvd |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) ) ∧ ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ) → ∃ 𝑧 ∈ ℤ ( 2 · ( 𝑦 + 𝑥 ) ) = ( 2 · 𝑧 ) ) |
| 25 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) → 𝑎 = ( 2 · 𝑦 ) ) |
| 26 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) → 𝑏 = ( 2 · 𝑥 ) ) |
| 27 |
25 26
|
oveqan12rd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) ) → ( 𝑎 + 𝑏 ) = ( ( 2 · 𝑦 ) + ( 2 · 𝑥 ) ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) ) ∧ ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ) → ( 𝑎 + 𝑏 ) = ( ( 2 · 𝑦 ) + ( 2 · 𝑥 ) ) ) |
| 29 |
|
2cnd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) ) → 2 ∈ ℂ ) |
| 30 |
|
zcn |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) → 𝑦 ∈ ℂ ) |
| 32 |
31
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) ) → 𝑦 ∈ ℂ ) |
| 33 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) → 𝑥 ∈ ℂ ) |
| 35 |
34
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) ) → 𝑥 ∈ ℂ ) |
| 36 |
29 32 35
|
adddid |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) ) → ( 2 · ( 𝑦 + 𝑥 ) ) = ( ( 2 · 𝑦 ) + ( 2 · 𝑥 ) ) ) |
| 37 |
36
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) ) ∧ ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ) → ( 2 · ( 𝑦 + 𝑥 ) ) = ( ( 2 · 𝑦 ) + ( 2 · 𝑥 ) ) ) |
| 38 |
28 37
|
eqtr4d |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) ) ∧ ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ) → ( 𝑎 + 𝑏 ) = ( 2 · ( 𝑦 + 𝑥 ) ) ) |
| 39 |
38
|
eqeq1d |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) ) ∧ ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ) → ( ( 𝑎 + 𝑏 ) = ( 2 · 𝑧 ) ↔ ( 2 · ( 𝑦 + 𝑥 ) ) = ( 2 · 𝑧 ) ) ) |
| 40 |
39
|
rexbidv |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) ) ∧ ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ) → ( ∃ 𝑧 ∈ ℤ ( 𝑎 + 𝑏 ) = ( 2 · 𝑧 ) ↔ ∃ 𝑧 ∈ ℤ ( 2 · ( 𝑦 + 𝑥 ) ) = ( 2 · 𝑧 ) ) ) |
| 41 |
24 40
|
mpbird |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) ) ∧ ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ) → ∃ 𝑧 ∈ ℤ ( 𝑎 + 𝑏 ) = ( 2 · 𝑧 ) ) |
| 42 |
41
|
ex |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑎 = ( 2 · 𝑦 ) ) ) → ( ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) → ∃ 𝑧 ∈ ℤ ( 𝑎 + 𝑏 ) = ( 2 · 𝑧 ) ) ) |
| 43 |
42
|
rexlimdvaa |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑏 = ( 2 · 𝑥 ) ) → ( ∃ 𝑦 ∈ ℤ 𝑎 = ( 2 · 𝑦 ) → ( ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) → ∃ 𝑧 ∈ ℤ ( 𝑎 + 𝑏 ) = ( 2 · 𝑧 ) ) ) ) |
| 44 |
43
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ℤ 𝑏 = ( 2 · 𝑥 ) → ( ∃ 𝑦 ∈ ℤ 𝑎 = ( 2 · 𝑦 ) → ( ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) → ∃ 𝑧 ∈ ℤ ( 𝑎 + 𝑏 ) = ( 2 · 𝑧 ) ) ) ) |
| 45 |
44
|
imp |
⊢ ( ( ∃ 𝑥 ∈ ℤ 𝑏 = ( 2 · 𝑥 ) ∧ ∃ 𝑦 ∈ ℤ 𝑎 = ( 2 · 𝑦 ) ) → ( ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) → ∃ 𝑧 ∈ ℤ ( 𝑎 + 𝑏 ) = ( 2 · 𝑧 ) ) ) |
| 46 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 2 · 𝑥 ) = ( 2 · 𝑧 ) ) |
| 47 |
46
|
eqeq2d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑎 + 𝑏 ) = ( 2 · 𝑥 ) ↔ ( 𝑎 + 𝑏 ) = ( 2 · 𝑧 ) ) ) |
| 48 |
47
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ ℤ ( 𝑎 + 𝑏 ) = ( 2 · 𝑥 ) ↔ ∃ 𝑧 ∈ ℤ ( 𝑎 + 𝑏 ) = ( 2 · 𝑧 ) ) |
| 49 |
45 48
|
imbitrrdi |
⊢ ( ( ∃ 𝑥 ∈ ℤ 𝑏 = ( 2 · 𝑥 ) ∧ ∃ 𝑦 ∈ ℤ 𝑎 = ( 2 · 𝑦 ) ) → ( ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) → ∃ 𝑥 ∈ ℤ ( 𝑎 + 𝑏 ) = ( 2 · 𝑥 ) ) ) |
| 50 |
49
|
impcom |
⊢ ( ( ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ∧ ( ∃ 𝑥 ∈ ℤ 𝑏 = ( 2 · 𝑥 ) ∧ ∃ 𝑦 ∈ ℤ 𝑎 = ( 2 · 𝑦 ) ) ) → ∃ 𝑥 ∈ ℤ ( 𝑎 + 𝑏 ) = ( 2 · 𝑥 ) ) |
| 51 |
|
eqeq1 |
⊢ ( 𝑧 = ( 𝑎 + 𝑏 ) → ( 𝑧 = ( 2 · 𝑥 ) ↔ ( 𝑎 + 𝑏 ) = ( 2 · 𝑥 ) ) ) |
| 52 |
51
|
rexbidv |
⊢ ( 𝑧 = ( 𝑎 + 𝑏 ) → ( ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℤ ( 𝑎 + 𝑏 ) = ( 2 · 𝑥 ) ) ) |
| 53 |
52 1
|
elrab2 |
⊢ ( ( 𝑎 + 𝑏 ) ∈ 𝐸 ↔ ( ( 𝑎 + 𝑏 ) ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ ( 𝑎 + 𝑏 ) = ( 2 · 𝑥 ) ) ) |
| 54 |
14 50 53
|
sylanbrc |
⊢ ( ( ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) ∧ ( ∃ 𝑥 ∈ ℤ 𝑏 = ( 2 · 𝑥 ) ∧ ∃ 𝑦 ∈ ℤ 𝑎 = ( 2 · 𝑦 ) ) ) → ( 𝑎 + 𝑏 ) ∈ 𝐸 ) |
| 55 |
54
|
exp32 |
⊢ ( ( 𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ ) → ( ∃ 𝑥 ∈ ℤ 𝑏 = ( 2 · 𝑥 ) → ( ∃ 𝑦 ∈ ℤ 𝑎 = ( 2 · 𝑦 ) → ( 𝑎 + 𝑏 ) ∈ 𝐸 ) ) ) |
| 56 |
55
|
impancom |
⊢ ( ( 𝑏 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 𝑏 = ( 2 · 𝑥 ) ) → ( 𝑎 ∈ ℤ → ( ∃ 𝑦 ∈ ℤ 𝑎 = ( 2 · 𝑦 ) → ( 𝑎 + 𝑏 ) ∈ 𝐸 ) ) ) |
| 57 |
56
|
com13 |
⊢ ( ∃ 𝑦 ∈ ℤ 𝑎 = ( 2 · 𝑦 ) → ( 𝑎 ∈ ℤ → ( ( 𝑏 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 𝑏 = ( 2 · 𝑥 ) ) → ( 𝑎 + 𝑏 ) ∈ 𝐸 ) ) ) |
| 58 |
11 57
|
sylbi |
⊢ ( ∃ 𝑥 ∈ ℤ 𝑎 = ( 2 · 𝑥 ) → ( 𝑎 ∈ ℤ → ( ( 𝑏 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 𝑏 = ( 2 · 𝑥 ) ) → ( 𝑎 + 𝑏 ) ∈ 𝐸 ) ) ) |
| 59 |
58
|
impcom |
⊢ ( ( 𝑎 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 𝑎 = ( 2 · 𝑥 ) ) → ( ( 𝑏 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 𝑏 = ( 2 · 𝑥 ) ) → ( 𝑎 + 𝑏 ) ∈ 𝐸 ) ) |
| 60 |
59
|
imp |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 𝑎 = ( 2 · 𝑥 ) ) ∧ ( 𝑏 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 𝑏 = ( 2 · 𝑥 ) ) ) → ( 𝑎 + 𝑏 ) ∈ 𝐸 ) |
| 61 |
5 8 60
|
syl2anb |
⊢ ( ( 𝑎 ∈ 𝐸 ∧ 𝑏 ∈ 𝐸 ) → ( 𝑎 + 𝑏 ) ∈ 𝐸 ) |
| 62 |
61
|
rgen2 |
⊢ ∀ 𝑎 ∈ 𝐸 ∀ 𝑏 ∈ 𝐸 ( 𝑎 + 𝑏 ) ∈ 𝐸 |
| 63 |
|
0z |
⊢ 0 ∈ ℤ |
| 64 |
|
2cn |
⊢ 2 ∈ ℂ |
| 65 |
|
0zd |
⊢ ( 2 ∈ ℂ → 0 ∈ ℤ ) |
| 66 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 2 · 𝑥 ) = ( 2 · 0 ) ) |
| 67 |
66
|
eqeq2d |
⊢ ( 𝑥 = 0 → ( 0 = ( 2 · 𝑥 ) ↔ 0 = ( 2 · 0 ) ) ) |
| 68 |
67
|
adantl |
⊢ ( ( 2 ∈ ℂ ∧ 𝑥 = 0 ) → ( 0 = ( 2 · 𝑥 ) ↔ 0 = ( 2 · 0 ) ) ) |
| 69 |
|
mul01 |
⊢ ( 2 ∈ ℂ → ( 2 · 0 ) = 0 ) |
| 70 |
69
|
eqcomd |
⊢ ( 2 ∈ ℂ → 0 = ( 2 · 0 ) ) |
| 71 |
65 68 70
|
rspcedvd |
⊢ ( 2 ∈ ℂ → ∃ 𝑥 ∈ ℤ 0 = ( 2 · 𝑥 ) ) |
| 72 |
64 71
|
ax-mp |
⊢ ∃ 𝑥 ∈ ℤ 0 = ( 2 · 𝑥 ) |
| 73 |
|
eqeq1 |
⊢ ( 𝑧 = 0 → ( 𝑧 = ( 2 · 𝑥 ) ↔ 0 = ( 2 · 𝑥 ) ) ) |
| 74 |
73
|
rexbidv |
⊢ ( 𝑧 = 0 → ( ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℤ 0 = ( 2 · 𝑥 ) ) ) |
| 75 |
74
|
elrab |
⊢ ( 0 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } ↔ ( 0 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 0 = ( 2 · 𝑥 ) ) ) |
| 76 |
63 72 75
|
mpbir2an |
⊢ 0 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } |
| 77 |
76 1
|
eleqtrri |
⊢ 0 ∈ 𝐸 |
| 78 |
1 2
|
2zrngbas |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
| 79 |
1 2
|
2zrngadd |
⊢ + = ( +g ‘ 𝑅 ) |
| 80 |
78 79
|
ismgmn0 |
⊢ ( 0 ∈ 𝐸 → ( 𝑅 ∈ Mgm ↔ ∀ 𝑎 ∈ 𝐸 ∀ 𝑏 ∈ 𝐸 ( 𝑎 + 𝑏 ) ∈ 𝐸 ) ) |
| 81 |
77 80
|
ax-mp |
⊢ ( 𝑅 ∈ Mgm ↔ ∀ 𝑎 ∈ 𝐸 ∀ 𝑏 ∈ 𝐸 ( 𝑎 + 𝑏 ) ∈ 𝐸 ) |
| 82 |
62 81
|
mpbir |
⊢ 𝑅 ∈ Mgm |