Description: R is an (additive) abelian group. (Contributed by AV, 11-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2zrng.e | ||
| 2zrngbas.r | |||
| Assertion | 2zrngaabl | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2zrng.e | ||
| 2 | 2zrngbas.r | ||
| 3 | 1 2 | 2zrngagrp | |
| 4 | 1 2 | 2zrngacmnd | |
| 5 | 3 4 | pm3.2i | |
| 6 | isabl | ||
| 7 | 5 6 | mpbir |