Metamath Proof Explorer


Theorem oddibas

Description: Lemma 1 for oddinmgm : The base set of M is the set of all odd integers. (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypotheses oddinmgm.e
|- O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) }
oddinmgm.r
|- M = ( CCfld |`s O )
Assertion oddibas
|- O = ( Base ` M )

Proof

Step Hyp Ref Expression
1 oddinmgm.e
 |-  O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) }
2 oddinmgm.r
 |-  M = ( CCfld |`s O )
3 ssrab2
 |-  { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) } C_ ZZ
4 1 3 eqsstri
 |-  O C_ ZZ
5 zsscn
 |-  ZZ C_ CC
6 4 5 sstri
 |-  O C_ CC
7 2 cnfldsrngbas
 |-  ( O C_ CC -> O = ( Base ` M ) )
8 6 7 ax-mp
 |-  O = ( Base ` M )