Description: Lemma 1 for oddinmgm : The base set of M is the set of all odd integers. (Contributed by AV, 3-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oddinmgm.e | |- O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) } |
|
oddinmgm.r | |- M = ( CCfld |`s O ) |
||
Assertion | oddibas | |- O = ( Base ` M ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddinmgm.e | |- O = { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) } |
|
2 | oddinmgm.r | |- M = ( CCfld |`s O ) |
|
3 | ssrab2 | |- { z e. ZZ | E. x e. ZZ z = ( ( 2 x. x ) + 1 ) } C_ ZZ |
|
4 | 1 3 | eqsstri | |- O C_ ZZ |
5 | zsscn | |- ZZ C_ CC |
|
6 | 4 5 | sstri | |- O C_ CC |
7 | 2 | cnfldsrngbas | |- ( O C_ CC -> O = ( Base ` M ) ) |
8 | 6 7 | ax-mp | |- O = ( Base ` M ) |