Metamath Proof Explorer


Theorem subadd2

Description: Relationship between subtraction and addition. (Contributed by Scott Fenton, 5-Jul-2013) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion subadd2
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) = C <-> ( C + B ) = A ) )

Proof

Step Hyp Ref Expression
1 subadd
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) = C <-> ( B + C ) = A ) )
2 simp2
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> B e. CC )
3 simp3
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC )
4 2 3 addcomd
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B + C ) = ( C + B ) )
5 4 eqeq1d
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B + C ) = A <-> ( C + B ) = A ) )
6 1 5 bitrd
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) = C <-> ( C + B ) = A ) )