Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3anidm12p2.1 | |- ( ( ps /\ ph /\ ph ) -> ch ) |
|
Assertion | 3anidm12p2 | |- ( ( ph /\ ps ) -> ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm12p2.1 | |- ( ( ps /\ ph /\ ph ) -> ch ) |
|
2 | 3anrot | |- ( ( ps /\ ph /\ ph ) <-> ( ph /\ ph /\ ps ) ) |
|
3 | 2 1 | sylbir | |- ( ( ph /\ ph /\ ps ) -> ch ) |
4 | 3 | 3anidm12 | |- ( ( ph /\ ps ) -> ch ) |