| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3ccased.1 |
|- ( ph -> ( ( ch /\ et ) -> ps ) ) |
| 2 |
|
3ccased.2 |
|- ( ph -> ( ( ch /\ ze ) -> ps ) ) |
| 3 |
|
3ccased.3 |
|- ( ph -> ( ( ch /\ si ) -> ps ) ) |
| 4 |
|
3ccased.4 |
|- ( ph -> ( ( th /\ et ) -> ps ) ) |
| 5 |
|
3ccased.5 |
|- ( ph -> ( ( th /\ ze ) -> ps ) ) |
| 6 |
|
3ccased.6 |
|- ( ph -> ( ( th /\ si ) -> ps ) ) |
| 7 |
|
3ccased.7 |
|- ( ph -> ( ( ta /\ et ) -> ps ) ) |
| 8 |
|
3ccased.8 |
|- ( ph -> ( ( ta /\ ze ) -> ps ) ) |
| 9 |
|
3ccased.9 |
|- ( ph -> ( ( ta /\ si ) -> ps ) ) |
| 10 |
1
|
com12 |
|- ( ( ch /\ et ) -> ( ph -> ps ) ) |
| 11 |
2
|
com12 |
|- ( ( ch /\ ze ) -> ( ph -> ps ) ) |
| 12 |
3
|
com12 |
|- ( ( ch /\ si ) -> ( ph -> ps ) ) |
| 13 |
10 11 12
|
3jaodan |
|- ( ( ch /\ ( et \/ ze \/ si ) ) -> ( ph -> ps ) ) |
| 14 |
4
|
com12 |
|- ( ( th /\ et ) -> ( ph -> ps ) ) |
| 15 |
5
|
com12 |
|- ( ( th /\ ze ) -> ( ph -> ps ) ) |
| 16 |
6
|
com12 |
|- ( ( th /\ si ) -> ( ph -> ps ) ) |
| 17 |
14 15 16
|
3jaodan |
|- ( ( th /\ ( et \/ ze \/ si ) ) -> ( ph -> ps ) ) |
| 18 |
7
|
com12 |
|- ( ( ta /\ et ) -> ( ph -> ps ) ) |
| 19 |
8
|
com12 |
|- ( ( ta /\ ze ) -> ( ph -> ps ) ) |
| 20 |
9
|
com12 |
|- ( ( ta /\ si ) -> ( ph -> ps ) ) |
| 21 |
18 19 20
|
3jaodan |
|- ( ( ta /\ ( et \/ ze \/ si ) ) -> ( ph -> ps ) ) |
| 22 |
13 17 21
|
3jaoian |
|- ( ( ( ch \/ th \/ ta ) /\ ( et \/ ze \/ si ) ) -> ( ph -> ps ) ) |
| 23 |
22
|
com12 |
|- ( ph -> ( ( ( ch \/ th \/ ta ) /\ ( et \/ ze \/ si ) ) -> ps ) ) |