Metamath Proof Explorer


Theorem 3ccased

Description: Triple disjunction form of ccased . (Contributed by Scott Fenton, 27-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses 3ccased.1
|- ( ph -> ( ( ch /\ et ) -> ps ) )
3ccased.2
|- ( ph -> ( ( ch /\ ze ) -> ps ) )
3ccased.3
|- ( ph -> ( ( ch /\ si ) -> ps ) )
3ccased.4
|- ( ph -> ( ( th /\ et ) -> ps ) )
3ccased.5
|- ( ph -> ( ( th /\ ze ) -> ps ) )
3ccased.6
|- ( ph -> ( ( th /\ si ) -> ps ) )
3ccased.7
|- ( ph -> ( ( ta /\ et ) -> ps ) )
3ccased.8
|- ( ph -> ( ( ta /\ ze ) -> ps ) )
3ccased.9
|- ( ph -> ( ( ta /\ si ) -> ps ) )
Assertion 3ccased
|- ( ph -> ( ( ( ch \/ th \/ ta ) /\ ( et \/ ze \/ si ) ) -> ps ) )

Proof

Step Hyp Ref Expression
1 3ccased.1
 |-  ( ph -> ( ( ch /\ et ) -> ps ) )
2 3ccased.2
 |-  ( ph -> ( ( ch /\ ze ) -> ps ) )
3 3ccased.3
 |-  ( ph -> ( ( ch /\ si ) -> ps ) )
4 3ccased.4
 |-  ( ph -> ( ( th /\ et ) -> ps ) )
5 3ccased.5
 |-  ( ph -> ( ( th /\ ze ) -> ps ) )
6 3ccased.6
 |-  ( ph -> ( ( th /\ si ) -> ps ) )
7 3ccased.7
 |-  ( ph -> ( ( ta /\ et ) -> ps ) )
8 3ccased.8
 |-  ( ph -> ( ( ta /\ ze ) -> ps ) )
9 3ccased.9
 |-  ( ph -> ( ( ta /\ si ) -> ps ) )
10 1 com12
 |-  ( ( ch /\ et ) -> ( ph -> ps ) )
11 2 com12
 |-  ( ( ch /\ ze ) -> ( ph -> ps ) )
12 3 com12
 |-  ( ( ch /\ si ) -> ( ph -> ps ) )
13 10 11 12 3jaodan
 |-  ( ( ch /\ ( et \/ ze \/ si ) ) -> ( ph -> ps ) )
14 4 com12
 |-  ( ( th /\ et ) -> ( ph -> ps ) )
15 5 com12
 |-  ( ( th /\ ze ) -> ( ph -> ps ) )
16 6 com12
 |-  ( ( th /\ si ) -> ( ph -> ps ) )
17 14 15 16 3jaodan
 |-  ( ( th /\ ( et \/ ze \/ si ) ) -> ( ph -> ps ) )
18 7 com12
 |-  ( ( ta /\ et ) -> ( ph -> ps ) )
19 8 com12
 |-  ( ( ta /\ ze ) -> ( ph -> ps ) )
20 9 com12
 |-  ( ( ta /\ si ) -> ( ph -> ps ) )
21 18 19 20 3jaodan
 |-  ( ( ta /\ ( et \/ ze \/ si ) ) -> ( ph -> ps ) )
22 13 17 21 3jaoian
 |-  ( ( ( ch \/ th \/ ta ) /\ ( et \/ ze \/ si ) ) -> ( ph -> ps ) )
23 22 com12
 |-  ( ph -> ( ( ( ch \/ th \/ ta ) /\ ( et \/ ze \/ si ) ) -> ps ) )