Step |
Hyp |
Ref |
Expression |
1 |
|
3ccased.1 |
|- ( ph -> ( ( ch /\ et ) -> ps ) ) |
2 |
|
3ccased.2 |
|- ( ph -> ( ( ch /\ ze ) -> ps ) ) |
3 |
|
3ccased.3 |
|- ( ph -> ( ( ch /\ si ) -> ps ) ) |
4 |
|
3ccased.4 |
|- ( ph -> ( ( th /\ et ) -> ps ) ) |
5 |
|
3ccased.5 |
|- ( ph -> ( ( th /\ ze ) -> ps ) ) |
6 |
|
3ccased.6 |
|- ( ph -> ( ( th /\ si ) -> ps ) ) |
7 |
|
3ccased.7 |
|- ( ph -> ( ( ta /\ et ) -> ps ) ) |
8 |
|
3ccased.8 |
|- ( ph -> ( ( ta /\ ze ) -> ps ) ) |
9 |
|
3ccased.9 |
|- ( ph -> ( ( ta /\ si ) -> ps ) ) |
10 |
1
|
com12 |
|- ( ( ch /\ et ) -> ( ph -> ps ) ) |
11 |
2
|
com12 |
|- ( ( ch /\ ze ) -> ( ph -> ps ) ) |
12 |
3
|
com12 |
|- ( ( ch /\ si ) -> ( ph -> ps ) ) |
13 |
10 11 12
|
3jaodan |
|- ( ( ch /\ ( et \/ ze \/ si ) ) -> ( ph -> ps ) ) |
14 |
4
|
com12 |
|- ( ( th /\ et ) -> ( ph -> ps ) ) |
15 |
5
|
com12 |
|- ( ( th /\ ze ) -> ( ph -> ps ) ) |
16 |
6
|
com12 |
|- ( ( th /\ si ) -> ( ph -> ps ) ) |
17 |
14 15 16
|
3jaodan |
|- ( ( th /\ ( et \/ ze \/ si ) ) -> ( ph -> ps ) ) |
18 |
7
|
com12 |
|- ( ( ta /\ et ) -> ( ph -> ps ) ) |
19 |
8
|
com12 |
|- ( ( ta /\ ze ) -> ( ph -> ps ) ) |
20 |
9
|
com12 |
|- ( ( ta /\ si ) -> ( ph -> ps ) ) |
21 |
18 19 20
|
3jaodan |
|- ( ( ta /\ ( et \/ ze \/ si ) ) -> ( ph -> ps ) ) |
22 |
13 17 21
|
3jaoian |
|- ( ( ( ch \/ th \/ ta ) /\ ( et \/ ze \/ si ) ) -> ( ph -> ps ) ) |
23 |
22
|
com12 |
|- ( ph -> ( ( ( ch \/ th \/ ta ) /\ ( et \/ ze \/ si ) ) -> ps ) ) |