Step |
Hyp |
Ref |
Expression |
1 |
|
3ccased.1 |
⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜂 ) → 𝜓 ) ) |
2 |
|
3ccased.2 |
⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜁 ) → 𝜓 ) ) |
3 |
|
3ccased.3 |
⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜎 ) → 𝜓 ) ) |
4 |
|
3ccased.4 |
⊢ ( 𝜑 → ( ( 𝜃 ∧ 𝜂 ) → 𝜓 ) ) |
5 |
|
3ccased.5 |
⊢ ( 𝜑 → ( ( 𝜃 ∧ 𝜁 ) → 𝜓 ) ) |
6 |
|
3ccased.6 |
⊢ ( 𝜑 → ( ( 𝜃 ∧ 𝜎 ) → 𝜓 ) ) |
7 |
|
3ccased.7 |
⊢ ( 𝜑 → ( ( 𝜏 ∧ 𝜂 ) → 𝜓 ) ) |
8 |
|
3ccased.8 |
⊢ ( 𝜑 → ( ( 𝜏 ∧ 𝜁 ) → 𝜓 ) ) |
9 |
|
3ccased.9 |
⊢ ( 𝜑 → ( ( 𝜏 ∧ 𝜎 ) → 𝜓 ) ) |
10 |
1
|
com12 |
⊢ ( ( 𝜒 ∧ 𝜂 ) → ( 𝜑 → 𝜓 ) ) |
11 |
2
|
com12 |
⊢ ( ( 𝜒 ∧ 𝜁 ) → ( 𝜑 → 𝜓 ) ) |
12 |
3
|
com12 |
⊢ ( ( 𝜒 ∧ 𝜎 ) → ( 𝜑 → 𝜓 ) ) |
13 |
10 11 12
|
3jaodan |
⊢ ( ( 𝜒 ∧ ( 𝜂 ∨ 𝜁 ∨ 𝜎 ) ) → ( 𝜑 → 𝜓 ) ) |
14 |
4
|
com12 |
⊢ ( ( 𝜃 ∧ 𝜂 ) → ( 𝜑 → 𝜓 ) ) |
15 |
5
|
com12 |
⊢ ( ( 𝜃 ∧ 𝜁 ) → ( 𝜑 → 𝜓 ) ) |
16 |
6
|
com12 |
⊢ ( ( 𝜃 ∧ 𝜎 ) → ( 𝜑 → 𝜓 ) ) |
17 |
14 15 16
|
3jaodan |
⊢ ( ( 𝜃 ∧ ( 𝜂 ∨ 𝜁 ∨ 𝜎 ) ) → ( 𝜑 → 𝜓 ) ) |
18 |
7
|
com12 |
⊢ ( ( 𝜏 ∧ 𝜂 ) → ( 𝜑 → 𝜓 ) ) |
19 |
8
|
com12 |
⊢ ( ( 𝜏 ∧ 𝜁 ) → ( 𝜑 → 𝜓 ) ) |
20 |
9
|
com12 |
⊢ ( ( 𝜏 ∧ 𝜎 ) → ( 𝜑 → 𝜓 ) ) |
21 |
18 19 20
|
3jaodan |
⊢ ( ( 𝜏 ∧ ( 𝜂 ∨ 𝜁 ∨ 𝜎 ) ) → ( 𝜑 → 𝜓 ) ) |
22 |
13 17 21
|
3jaoian |
⊢ ( ( ( 𝜒 ∨ 𝜃 ∨ 𝜏 ) ∧ ( 𝜂 ∨ 𝜁 ∨ 𝜎 ) ) → ( 𝜑 → 𝜓 ) ) |
23 |
22
|
com12 |
⊢ ( 𝜑 → ( ( ( 𝜒 ∨ 𝜃 ∨ 𝜏 ) ∧ ( 𝜂 ∨ 𝜁 ∨ 𝜎 ) ) → 𝜓 ) ) |