Metamath Proof Explorer


Theorem 3ccased

Description: Triple disjunction form of ccased . (Contributed by Scott Fenton, 27-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses 3ccased.1 ( 𝜑 → ( ( 𝜒𝜂 ) → 𝜓 ) )
3ccased.2 ( 𝜑 → ( ( 𝜒𝜁 ) → 𝜓 ) )
3ccased.3 ( 𝜑 → ( ( 𝜒𝜎 ) → 𝜓 ) )
3ccased.4 ( 𝜑 → ( ( 𝜃𝜂 ) → 𝜓 ) )
3ccased.5 ( 𝜑 → ( ( 𝜃𝜁 ) → 𝜓 ) )
3ccased.6 ( 𝜑 → ( ( 𝜃𝜎 ) → 𝜓 ) )
3ccased.7 ( 𝜑 → ( ( 𝜏𝜂 ) → 𝜓 ) )
3ccased.8 ( 𝜑 → ( ( 𝜏𝜁 ) → 𝜓 ) )
3ccased.9 ( 𝜑 → ( ( 𝜏𝜎 ) → 𝜓 ) )
Assertion 3ccased ( 𝜑 → ( ( ( 𝜒𝜃𝜏 ) ∧ ( 𝜂𝜁𝜎 ) ) → 𝜓 ) )

Proof

Step Hyp Ref Expression
1 3ccased.1 ( 𝜑 → ( ( 𝜒𝜂 ) → 𝜓 ) )
2 3ccased.2 ( 𝜑 → ( ( 𝜒𝜁 ) → 𝜓 ) )
3 3ccased.3 ( 𝜑 → ( ( 𝜒𝜎 ) → 𝜓 ) )
4 3ccased.4 ( 𝜑 → ( ( 𝜃𝜂 ) → 𝜓 ) )
5 3ccased.5 ( 𝜑 → ( ( 𝜃𝜁 ) → 𝜓 ) )
6 3ccased.6 ( 𝜑 → ( ( 𝜃𝜎 ) → 𝜓 ) )
7 3ccased.7 ( 𝜑 → ( ( 𝜏𝜂 ) → 𝜓 ) )
8 3ccased.8 ( 𝜑 → ( ( 𝜏𝜁 ) → 𝜓 ) )
9 3ccased.9 ( 𝜑 → ( ( 𝜏𝜎 ) → 𝜓 ) )
10 1 com12 ( ( 𝜒𝜂 ) → ( 𝜑𝜓 ) )
11 2 com12 ( ( 𝜒𝜁 ) → ( 𝜑𝜓 ) )
12 3 com12 ( ( 𝜒𝜎 ) → ( 𝜑𝜓 ) )
13 10 11 12 3jaodan ( ( 𝜒 ∧ ( 𝜂𝜁𝜎 ) ) → ( 𝜑𝜓 ) )
14 4 com12 ( ( 𝜃𝜂 ) → ( 𝜑𝜓 ) )
15 5 com12 ( ( 𝜃𝜁 ) → ( 𝜑𝜓 ) )
16 6 com12 ( ( 𝜃𝜎 ) → ( 𝜑𝜓 ) )
17 14 15 16 3jaodan ( ( 𝜃 ∧ ( 𝜂𝜁𝜎 ) ) → ( 𝜑𝜓 ) )
18 7 com12 ( ( 𝜏𝜂 ) → ( 𝜑𝜓 ) )
19 8 com12 ( ( 𝜏𝜁 ) → ( 𝜑𝜓 ) )
20 9 com12 ( ( 𝜏𝜎 ) → ( 𝜑𝜓 ) )
21 18 19 20 3jaodan ( ( 𝜏 ∧ ( 𝜂𝜁𝜎 ) ) → ( 𝜑𝜓 ) )
22 13 17 21 3jaoian ( ( ( 𝜒𝜃𝜏 ) ∧ ( 𝜂𝜁𝜎 ) ) → ( 𝜑𝜓 ) )
23 22 com12 ( 𝜑 → ( ( ( 𝜒𝜃𝜏 ) ∧ ( 𝜂𝜁𝜎 ) ) → 𝜓 ) )