| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3ccased.1 |
⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜂 ) → 𝜓 ) ) |
| 2 |
|
3ccased.2 |
⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜁 ) → 𝜓 ) ) |
| 3 |
|
3ccased.3 |
⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜎 ) → 𝜓 ) ) |
| 4 |
|
3ccased.4 |
⊢ ( 𝜑 → ( ( 𝜃 ∧ 𝜂 ) → 𝜓 ) ) |
| 5 |
|
3ccased.5 |
⊢ ( 𝜑 → ( ( 𝜃 ∧ 𝜁 ) → 𝜓 ) ) |
| 6 |
|
3ccased.6 |
⊢ ( 𝜑 → ( ( 𝜃 ∧ 𝜎 ) → 𝜓 ) ) |
| 7 |
|
3ccased.7 |
⊢ ( 𝜑 → ( ( 𝜏 ∧ 𝜂 ) → 𝜓 ) ) |
| 8 |
|
3ccased.8 |
⊢ ( 𝜑 → ( ( 𝜏 ∧ 𝜁 ) → 𝜓 ) ) |
| 9 |
|
3ccased.9 |
⊢ ( 𝜑 → ( ( 𝜏 ∧ 𝜎 ) → 𝜓 ) ) |
| 10 |
1
|
com12 |
⊢ ( ( 𝜒 ∧ 𝜂 ) → ( 𝜑 → 𝜓 ) ) |
| 11 |
2
|
com12 |
⊢ ( ( 𝜒 ∧ 𝜁 ) → ( 𝜑 → 𝜓 ) ) |
| 12 |
3
|
com12 |
⊢ ( ( 𝜒 ∧ 𝜎 ) → ( 𝜑 → 𝜓 ) ) |
| 13 |
10 11 12
|
3jaodan |
⊢ ( ( 𝜒 ∧ ( 𝜂 ∨ 𝜁 ∨ 𝜎 ) ) → ( 𝜑 → 𝜓 ) ) |
| 14 |
4
|
com12 |
⊢ ( ( 𝜃 ∧ 𝜂 ) → ( 𝜑 → 𝜓 ) ) |
| 15 |
5
|
com12 |
⊢ ( ( 𝜃 ∧ 𝜁 ) → ( 𝜑 → 𝜓 ) ) |
| 16 |
6
|
com12 |
⊢ ( ( 𝜃 ∧ 𝜎 ) → ( 𝜑 → 𝜓 ) ) |
| 17 |
14 15 16
|
3jaodan |
⊢ ( ( 𝜃 ∧ ( 𝜂 ∨ 𝜁 ∨ 𝜎 ) ) → ( 𝜑 → 𝜓 ) ) |
| 18 |
7
|
com12 |
⊢ ( ( 𝜏 ∧ 𝜂 ) → ( 𝜑 → 𝜓 ) ) |
| 19 |
8
|
com12 |
⊢ ( ( 𝜏 ∧ 𝜁 ) → ( 𝜑 → 𝜓 ) ) |
| 20 |
9
|
com12 |
⊢ ( ( 𝜏 ∧ 𝜎 ) → ( 𝜑 → 𝜓 ) ) |
| 21 |
18 19 20
|
3jaodan |
⊢ ( ( 𝜏 ∧ ( 𝜂 ∨ 𝜁 ∨ 𝜎 ) ) → ( 𝜑 → 𝜓 ) ) |
| 22 |
13 17 21
|
3jaoian |
⊢ ( ( ( 𝜒 ∨ 𝜃 ∨ 𝜏 ) ∧ ( 𝜂 ∨ 𝜁 ∨ 𝜎 ) ) → ( 𝜑 → 𝜓 ) ) |
| 23 |
22
|
com12 |
⊢ ( 𝜑 → ( ( ( 𝜒 ∨ 𝜃 ∨ 𝜏 ) ∧ ( 𝜂 ∨ 𝜁 ∨ 𝜎 ) ) → 𝜓 ) ) |