Metamath Proof Explorer


Theorem 3ccased

Description: Triple disjunction form of ccased . (Contributed by Scott Fenton, 27-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses 3ccased.1 φ χ η ψ
3ccased.2 φ χ ζ ψ
3ccased.3 φ χ σ ψ
3ccased.4 φ θ η ψ
3ccased.5 φ θ ζ ψ
3ccased.6 φ θ σ ψ
3ccased.7 φ τ η ψ
3ccased.8 φ τ ζ ψ
3ccased.9 φ τ σ ψ
Assertion 3ccased φ χ θ τ η ζ σ ψ

Proof

Step Hyp Ref Expression
1 3ccased.1 φ χ η ψ
2 3ccased.2 φ χ ζ ψ
3 3ccased.3 φ χ σ ψ
4 3ccased.4 φ θ η ψ
5 3ccased.5 φ θ ζ ψ
6 3ccased.6 φ θ σ ψ
7 3ccased.7 φ τ η ψ
8 3ccased.8 φ τ ζ ψ
9 3ccased.9 φ τ σ ψ
10 1 com12 χ η φ ψ
11 2 com12 χ ζ φ ψ
12 3 com12 χ σ φ ψ
13 10 11 12 3jaodan χ η ζ σ φ ψ
14 4 com12 θ η φ ψ
15 5 com12 θ ζ φ ψ
16 6 com12 θ σ φ ψ
17 14 15 16 3jaodan θ η ζ σ φ ψ
18 7 com12 τ η φ ψ
19 8 com12 τ ζ φ ψ
20 9 com12 τ σ φ ψ
21 18 19 20 3jaodan τ η ζ σ φ ψ
22 13 17 21 3jaoian χ θ τ η ζ σ φ ψ
23 22 com12 φ χ θ τ η ζ σ ψ