Metamath Proof Explorer


Theorem 3ccased

Description: Triple disjunction form of ccased . (Contributed by Scott Fenton, 27-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses 3ccased.1 φχηψ
3ccased.2 φχζψ
3ccased.3 φχσψ
3ccased.4 φθηψ
3ccased.5 φθζψ
3ccased.6 φθσψ
3ccased.7 φτηψ
3ccased.8 φτζψ
3ccased.9 φτσψ
Assertion 3ccased φχθτηζσψ

Proof

Step Hyp Ref Expression
1 3ccased.1 φχηψ
2 3ccased.2 φχζψ
3 3ccased.3 φχσψ
4 3ccased.4 φθηψ
5 3ccased.5 φθζψ
6 3ccased.6 φθσψ
7 3ccased.7 φτηψ
8 3ccased.8 φτζψ
9 3ccased.9 φτσψ
10 1 com12 χηφψ
11 2 com12 χζφψ
12 3 com12 χσφψ
13 10 11 12 3jaodan χηζσφψ
14 4 com12 θηφψ
15 5 com12 θζφψ
16 6 com12 θσφψ
17 14 15 16 3jaodan θηζσφψ
18 7 com12 τηφψ
19 8 com12 τζφψ
20 9 com12 τσφψ
21 18 19 20 3jaodan τηζσφψ
22 13 17 21 3jaoian χθτηζσφψ
23 22 com12 φχθτηζσψ