| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3wlkd.p |
|- P = <" A B C D "> |
| 2 |
|
3wlkd.f |
|- F = <" J K L "> |
| 3 |
|
3wlkd.s |
|- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
| 4 |
|
3wlkd.n |
|- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
| 5 |
|
3wlkd.e |
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) |
| 6 |
|
3wlkd.v |
|- V = ( Vtx ` G ) |
| 7 |
|
3wlkd.i |
|- I = ( iEdg ` G ) |
| 8 |
|
3trld.n |
|- ( ph -> ( J =/= K /\ J =/= L /\ K =/= L ) ) |
| 9 |
|
s4cli |
|- <" A B C D "> e. Word _V |
| 10 |
1 9
|
eqeltri |
|- P e. Word _V |
| 11 |
10
|
a1i |
|- ( ph -> P e. Word _V ) |
| 12 |
2
|
fveq2i |
|- ( # ` F ) = ( # ` <" J K L "> ) |
| 13 |
|
s3len |
|- ( # ` <" J K L "> ) = 3 |
| 14 |
12 13
|
eqtri |
|- ( # ` F ) = 3 |
| 15 |
|
4m1e3 |
|- ( 4 - 1 ) = 3 |
| 16 |
1
|
fveq2i |
|- ( # ` P ) = ( # ` <" A B C D "> ) |
| 17 |
|
s4len |
|- ( # ` <" A B C D "> ) = 4 |
| 18 |
16 17
|
eqtr2i |
|- 4 = ( # ` P ) |
| 19 |
18
|
oveq1i |
|- ( 4 - 1 ) = ( ( # ` P ) - 1 ) |
| 20 |
14 15 19
|
3eqtr2i |
|- ( # ` F ) = ( ( # ` P ) - 1 ) |
| 21 |
1 2 3 4
|
3pthdlem1 |
|- ( ph -> A. k e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) ) |
| 22 |
|
eqid |
|- ( # ` F ) = ( # ` F ) |
| 23 |
1 2 3 4 5 6 7 8
|
3trld |
|- ( ph -> F ( Trails ` G ) P ) |
| 24 |
11 20 21 22 23
|
pthd |
|- ( ph -> F ( Paths ` G ) P ) |