| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3wlkd.p |
|- P = <" A B C D "> |
| 2 |
|
3wlkd.f |
|- F = <" J K L "> |
| 3 |
|
3wlkd.s |
|- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
| 4 |
|
3wlkd.n |
|- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
| 5 |
1 2 3
|
3wlkdlem3 |
|- ( ph -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) ) |
| 6 |
|
simpr1l |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> A =/= B ) |
| 7 |
|
simpl |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( P ` 0 ) = A ) |
| 8 |
7
|
adantr |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( P ` 0 ) = A ) |
| 9 |
|
simpr |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( P ` 1 ) = B ) |
| 10 |
9
|
adantr |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( P ` 1 ) = B ) |
| 11 |
8 10
|
neeq12d |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( P ` 0 ) =/= ( P ` 1 ) <-> A =/= B ) ) |
| 12 |
11
|
adantr |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( ( P ` 0 ) =/= ( P ` 1 ) <-> A =/= B ) ) |
| 13 |
6 12
|
mpbird |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
| 14 |
13
|
a1d |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 15 |
|
simpr1r |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> A =/= C ) |
| 16 |
|
simpl |
|- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( P ` 2 ) = C ) |
| 17 |
16
|
adantl |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( P ` 2 ) = C ) |
| 18 |
8 17
|
neeq12d |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( P ` 0 ) =/= ( P ` 2 ) <-> A =/= C ) ) |
| 19 |
18
|
adantr |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( ( P ` 0 ) =/= ( P ` 2 ) <-> A =/= C ) ) |
| 20 |
15 19
|
mpbird |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) |
| 21 |
20
|
a1d |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( 0 =/= 2 -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 22 |
14 21
|
jca |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 0 =/= 2 -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
| 23 |
|
eqid |
|- 1 = 1 |
| 24 |
23
|
2a1i |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( ( P ` 1 ) = ( P ` 1 ) -> 1 = 1 ) ) |
| 25 |
24
|
necon3d |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) ) |
| 26 |
|
simpr2l |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> B =/= C ) |
| 27 |
10 17
|
neeq12d |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( P ` 1 ) =/= ( P ` 2 ) <-> B =/= C ) ) |
| 28 |
27
|
adantr |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( ( P ` 1 ) =/= ( P ` 2 ) <-> B =/= C ) ) |
| 29 |
26 28
|
mpbird |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( P ` 1 ) =/= ( P ` 2 ) ) |
| 30 |
29
|
a1d |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( 1 =/= 2 -> ( P ` 1 ) =/= ( P ` 2 ) ) ) |
| 31 |
25 30
|
jca |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 2 -> ( P ` 1 ) =/= ( P ` 2 ) ) ) ) |
| 32 |
29
|
necomd |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( P ` 2 ) =/= ( P ` 1 ) ) |
| 33 |
32
|
a1d |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) |
| 34 |
|
eqid |
|- 2 = 2 |
| 35 |
34
|
2a1i |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( ( P ` 2 ) = ( P ` 2 ) -> 2 = 2 ) ) |
| 36 |
35
|
necon3d |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( 2 =/= 2 -> ( P ` 2 ) =/= ( P ` 2 ) ) ) |
| 37 |
|
simpr2r |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> B =/= D ) |
| 38 |
|
simpr |
|- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( P ` 3 ) = D ) |
| 39 |
38
|
adantl |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( P ` 3 ) = D ) |
| 40 |
10 39
|
neeq12d |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( P ` 1 ) =/= ( P ` 3 ) <-> B =/= D ) ) |
| 41 |
40
|
adantr |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( ( P ` 1 ) =/= ( P ` 3 ) <-> B =/= D ) ) |
| 42 |
37 41
|
mpbird |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( P ` 1 ) =/= ( P ` 3 ) ) |
| 43 |
42
|
necomd |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( P ` 3 ) =/= ( P ` 1 ) ) |
| 44 |
43
|
a1d |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( 3 =/= 1 -> ( P ` 3 ) =/= ( P ` 1 ) ) ) |
| 45 |
|
simp3 |
|- ( ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) -> C =/= D ) |
| 46 |
45
|
necomd |
|- ( ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) -> D =/= C ) |
| 47 |
46
|
adantl |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> D =/= C ) |
| 48 |
|
simpl |
|- ( ( ( P ` 3 ) = D /\ ( P ` 2 ) = C ) -> ( P ` 3 ) = D ) |
| 49 |
|
simpr |
|- ( ( ( P ` 3 ) = D /\ ( P ` 2 ) = C ) -> ( P ` 2 ) = C ) |
| 50 |
48 49
|
neeq12d |
|- ( ( ( P ` 3 ) = D /\ ( P ` 2 ) = C ) -> ( ( P ` 3 ) =/= ( P ` 2 ) <-> D =/= C ) ) |
| 51 |
50
|
ancoms |
|- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( ( P ` 3 ) =/= ( P ` 2 ) <-> D =/= C ) ) |
| 52 |
51
|
adantl |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( P ` 3 ) =/= ( P ` 2 ) <-> D =/= C ) ) |
| 53 |
52
|
adantr |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( ( P ` 3 ) =/= ( P ` 2 ) <-> D =/= C ) ) |
| 54 |
47 53
|
mpbird |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( P ` 3 ) =/= ( P ` 2 ) ) |
| 55 |
54
|
a1d |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( 3 =/= 2 -> ( P ` 3 ) =/= ( P ` 2 ) ) ) |
| 56 |
44 55
|
jca |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( ( 3 =/= 1 -> ( P ` 3 ) =/= ( P ` 1 ) ) /\ ( 3 =/= 2 -> ( P ` 3 ) =/= ( P ` 2 ) ) ) ) |
| 57 |
33 36 56
|
jca31 |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( ( ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 2 -> ( P ` 2 ) =/= ( P ` 2 ) ) ) /\ ( ( 3 =/= 1 -> ( P ` 3 ) =/= ( P ` 1 ) ) /\ ( 3 =/= 2 -> ( P ` 3 ) =/= ( P ` 2 ) ) ) ) ) |
| 58 |
22 31 57
|
jca31 |
|- ( ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) /\ ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) -> ( ( ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 0 =/= 2 -> ( P ` 0 ) =/= ( P ` 2 ) ) ) /\ ( ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 2 -> ( P ` 1 ) =/= ( P ` 2 ) ) ) ) /\ ( ( ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 2 -> ( P ` 2 ) =/= ( P ` 2 ) ) ) /\ ( ( 3 =/= 1 -> ( P ` 3 ) =/= ( P ` 1 ) ) /\ ( 3 =/= 2 -> ( P ` 3 ) =/= ( P ` 2 ) ) ) ) ) ) |
| 59 |
5 4 58
|
syl2anc |
|- ( ph -> ( ( ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 0 =/= 2 -> ( P ` 0 ) =/= ( P ` 2 ) ) ) /\ ( ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 2 -> ( P ` 1 ) =/= ( P ` 2 ) ) ) ) /\ ( ( ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 2 -> ( P ` 2 ) =/= ( P ` 2 ) ) ) /\ ( ( 3 =/= 1 -> ( P ` 3 ) =/= ( P ` 1 ) ) /\ ( 3 =/= 2 -> ( P ` 3 ) =/= ( P ` 2 ) ) ) ) ) ) |
| 60 |
1
|
fveq2i |
|- ( # ` P ) = ( # ` <" A B C D "> ) |
| 61 |
|
s4len |
|- ( # ` <" A B C D "> ) = 4 |
| 62 |
60 61
|
eqtri |
|- ( # ` P ) = 4 |
| 63 |
62
|
oveq2i |
|- ( 0 ..^ ( # ` P ) ) = ( 0 ..^ 4 ) |
| 64 |
|
fzo0to42pr |
|- ( 0 ..^ 4 ) = ( { 0 , 1 } u. { 2 , 3 } ) |
| 65 |
63 64
|
eqtri |
|- ( 0 ..^ ( # ` P ) ) = ( { 0 , 1 } u. { 2 , 3 } ) |
| 66 |
65
|
raleqi |
|- ( A. k e. ( 0 ..^ ( # ` P ) ) ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) <-> A. k e. ( { 0 , 1 } u. { 2 , 3 } ) ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) ) |
| 67 |
|
ralunb |
|- ( A. k e. ( { 0 , 1 } u. { 2 , 3 } ) ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) <-> ( A. k e. { 0 , 1 } ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) /\ A. k e. { 2 , 3 } ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) ) ) |
| 68 |
|
c0ex |
|- 0 e. _V |
| 69 |
|
1ex |
|- 1 e. _V |
| 70 |
|
neeq1 |
|- ( k = 0 -> ( k =/= 1 <-> 0 =/= 1 ) ) |
| 71 |
|
fveq2 |
|- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
| 72 |
71
|
neeq1d |
|- ( k = 0 -> ( ( P ` k ) =/= ( P ` 1 ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 73 |
70 72
|
imbi12d |
|- ( k = 0 -> ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) ) ) |
| 74 |
|
neeq1 |
|- ( k = 0 -> ( k =/= 2 <-> 0 =/= 2 ) ) |
| 75 |
71
|
neeq1d |
|- ( k = 0 -> ( ( P ` k ) =/= ( P ` 2 ) <-> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 76 |
74 75
|
imbi12d |
|- ( k = 0 -> ( ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) <-> ( 0 =/= 2 -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
| 77 |
73 76
|
anbi12d |
|- ( k = 0 -> ( ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) <-> ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 0 =/= 2 -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) ) |
| 78 |
|
neeq1 |
|- ( k = 1 -> ( k =/= 1 <-> 1 =/= 1 ) ) |
| 79 |
|
fveq2 |
|- ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) |
| 80 |
79
|
neeq1d |
|- ( k = 1 -> ( ( P ` k ) =/= ( P ` 1 ) <-> ( P ` 1 ) =/= ( P ` 1 ) ) ) |
| 81 |
78 80
|
imbi12d |
|- ( k = 1 -> ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) ) ) |
| 82 |
|
neeq1 |
|- ( k = 1 -> ( k =/= 2 <-> 1 =/= 2 ) ) |
| 83 |
79
|
neeq1d |
|- ( k = 1 -> ( ( P ` k ) =/= ( P ` 2 ) <-> ( P ` 1 ) =/= ( P ` 2 ) ) ) |
| 84 |
82 83
|
imbi12d |
|- ( k = 1 -> ( ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) <-> ( 1 =/= 2 -> ( P ` 1 ) =/= ( P ` 2 ) ) ) ) |
| 85 |
81 84
|
anbi12d |
|- ( k = 1 -> ( ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) <-> ( ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 2 -> ( P ` 1 ) =/= ( P ` 2 ) ) ) ) ) |
| 86 |
68 69 77 85
|
ralpr |
|- ( A. k e. { 0 , 1 } ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) <-> ( ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 0 =/= 2 -> ( P ` 0 ) =/= ( P ` 2 ) ) ) /\ ( ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 2 -> ( P ` 1 ) =/= ( P ` 2 ) ) ) ) ) |
| 87 |
|
2ex |
|- 2 e. _V |
| 88 |
|
3ex |
|- 3 e. _V |
| 89 |
|
neeq1 |
|- ( k = 2 -> ( k =/= 1 <-> 2 =/= 1 ) ) |
| 90 |
|
fveq2 |
|- ( k = 2 -> ( P ` k ) = ( P ` 2 ) ) |
| 91 |
90
|
neeq1d |
|- ( k = 2 -> ( ( P ` k ) =/= ( P ` 1 ) <-> ( P ` 2 ) =/= ( P ` 1 ) ) ) |
| 92 |
89 91
|
imbi12d |
|- ( k = 2 -> ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) ) ) |
| 93 |
|
neeq1 |
|- ( k = 2 -> ( k =/= 2 <-> 2 =/= 2 ) ) |
| 94 |
90
|
neeq1d |
|- ( k = 2 -> ( ( P ` k ) =/= ( P ` 2 ) <-> ( P ` 2 ) =/= ( P ` 2 ) ) ) |
| 95 |
93 94
|
imbi12d |
|- ( k = 2 -> ( ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) <-> ( 2 =/= 2 -> ( P ` 2 ) =/= ( P ` 2 ) ) ) ) |
| 96 |
92 95
|
anbi12d |
|- ( k = 2 -> ( ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) <-> ( ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 2 -> ( P ` 2 ) =/= ( P ` 2 ) ) ) ) ) |
| 97 |
|
neeq1 |
|- ( k = 3 -> ( k =/= 1 <-> 3 =/= 1 ) ) |
| 98 |
|
fveq2 |
|- ( k = 3 -> ( P ` k ) = ( P ` 3 ) ) |
| 99 |
98
|
neeq1d |
|- ( k = 3 -> ( ( P ` k ) =/= ( P ` 1 ) <-> ( P ` 3 ) =/= ( P ` 1 ) ) ) |
| 100 |
97 99
|
imbi12d |
|- ( k = 3 -> ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) <-> ( 3 =/= 1 -> ( P ` 3 ) =/= ( P ` 1 ) ) ) ) |
| 101 |
|
neeq1 |
|- ( k = 3 -> ( k =/= 2 <-> 3 =/= 2 ) ) |
| 102 |
98
|
neeq1d |
|- ( k = 3 -> ( ( P ` k ) =/= ( P ` 2 ) <-> ( P ` 3 ) =/= ( P ` 2 ) ) ) |
| 103 |
101 102
|
imbi12d |
|- ( k = 3 -> ( ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) <-> ( 3 =/= 2 -> ( P ` 3 ) =/= ( P ` 2 ) ) ) ) |
| 104 |
100 103
|
anbi12d |
|- ( k = 3 -> ( ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) <-> ( ( 3 =/= 1 -> ( P ` 3 ) =/= ( P ` 1 ) ) /\ ( 3 =/= 2 -> ( P ` 3 ) =/= ( P ` 2 ) ) ) ) ) |
| 105 |
87 88 96 104
|
ralpr |
|- ( A. k e. { 2 , 3 } ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) <-> ( ( ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 2 -> ( P ` 2 ) =/= ( P ` 2 ) ) ) /\ ( ( 3 =/= 1 -> ( P ` 3 ) =/= ( P ` 1 ) ) /\ ( 3 =/= 2 -> ( P ` 3 ) =/= ( P ` 2 ) ) ) ) ) |
| 106 |
86 105
|
anbi12i |
|- ( ( A. k e. { 0 , 1 } ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) /\ A. k e. { 2 , 3 } ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) ) <-> ( ( ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 0 =/= 2 -> ( P ` 0 ) =/= ( P ` 2 ) ) ) /\ ( ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 2 -> ( P ` 1 ) =/= ( P ` 2 ) ) ) ) /\ ( ( ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 2 -> ( P ` 2 ) =/= ( P ` 2 ) ) ) /\ ( ( 3 =/= 1 -> ( P ` 3 ) =/= ( P ` 1 ) ) /\ ( 3 =/= 2 -> ( P ` 3 ) =/= ( P ` 2 ) ) ) ) ) ) |
| 107 |
66 67 106
|
3bitri |
|- ( A. k e. ( 0 ..^ ( # ` P ) ) ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) <-> ( ( ( ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 1 ) ) /\ ( 0 =/= 2 -> ( P ` 0 ) =/= ( P ` 2 ) ) ) /\ ( ( 1 =/= 1 -> ( P ` 1 ) =/= ( P ` 1 ) ) /\ ( 1 =/= 2 -> ( P ` 1 ) =/= ( P ` 2 ) ) ) ) /\ ( ( ( 2 =/= 1 -> ( P ` 2 ) =/= ( P ` 1 ) ) /\ ( 2 =/= 2 -> ( P ` 2 ) =/= ( P ` 2 ) ) ) /\ ( ( 3 =/= 1 -> ( P ` 3 ) =/= ( P ` 1 ) ) /\ ( 3 =/= 2 -> ( P ` 3 ) =/= ( P ` 2 ) ) ) ) ) ) |
| 108 |
59 107
|
sylibr |
|- ( ph -> A. k e. ( 0 ..^ ( # ` P ) ) ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) ) |
| 109 |
2
|
fveq2i |
|- ( # ` F ) = ( # ` <" J K L "> ) |
| 110 |
|
s3len |
|- ( # ` <" J K L "> ) = 3 |
| 111 |
109 110
|
eqtri |
|- ( # ` F ) = 3 |
| 112 |
111
|
oveq2i |
|- ( 1 ..^ ( # ` F ) ) = ( 1 ..^ 3 ) |
| 113 |
|
fzo13pr |
|- ( 1 ..^ 3 ) = { 1 , 2 } |
| 114 |
112 113
|
eqtri |
|- ( 1 ..^ ( # ` F ) ) = { 1 , 2 } |
| 115 |
114
|
raleqi |
|- ( A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> A. j e. { 1 , 2 } ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) ) |
| 116 |
|
neeq2 |
|- ( j = 1 -> ( k =/= j <-> k =/= 1 ) ) |
| 117 |
|
fveq2 |
|- ( j = 1 -> ( P ` j ) = ( P ` 1 ) ) |
| 118 |
117
|
neeq2d |
|- ( j = 1 -> ( ( P ` k ) =/= ( P ` j ) <-> ( P ` k ) =/= ( P ` 1 ) ) ) |
| 119 |
116 118
|
imbi12d |
|- ( j = 1 -> ( ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) ) ) |
| 120 |
|
neeq2 |
|- ( j = 2 -> ( k =/= j <-> k =/= 2 ) ) |
| 121 |
|
fveq2 |
|- ( j = 2 -> ( P ` j ) = ( P ` 2 ) ) |
| 122 |
121
|
neeq2d |
|- ( j = 2 -> ( ( P ` k ) =/= ( P ` j ) <-> ( P ` k ) =/= ( P ` 2 ) ) ) |
| 123 |
120 122
|
imbi12d |
|- ( j = 2 -> ( ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) ) |
| 124 |
69 87 119 123
|
ralpr |
|- ( A. j e. { 1 , 2 } ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) ) |
| 125 |
115 124
|
bitri |
|- ( A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) ) |
| 126 |
125
|
ralbii |
|- ( A. k e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) <-> A. k e. ( 0 ..^ ( # ` P ) ) ( ( k =/= 1 -> ( P ` k ) =/= ( P ` 1 ) ) /\ ( k =/= 2 -> ( P ` k ) =/= ( P ` 2 ) ) ) ) |
| 127 |
108 126
|
sylibr |
|- ( ph -> A. k e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ ( # ` F ) ) ( k =/= j -> ( P ` k ) =/= ( P ` j ) ) ) |