| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3wlkd.p |
|- P = <" A B C D "> |
| 2 |
|
3wlkd.f |
|- F = <" J K L "> |
| 3 |
|
3wlkd.s |
|- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
| 4 |
1
|
fveq1i |
|- ( P ` 0 ) = ( <" A B C D "> ` 0 ) |
| 5 |
|
s4fv0 |
|- ( A e. V -> ( <" A B C D "> ` 0 ) = A ) |
| 6 |
4 5
|
eqtrid |
|- ( A e. V -> ( P ` 0 ) = A ) |
| 7 |
1
|
fveq1i |
|- ( P ` 1 ) = ( <" A B C D "> ` 1 ) |
| 8 |
|
s4fv1 |
|- ( B e. V -> ( <" A B C D "> ` 1 ) = B ) |
| 9 |
7 8
|
eqtrid |
|- ( B e. V -> ( P ` 1 ) = B ) |
| 10 |
6 9
|
anim12i |
|- ( ( A e. V /\ B e. V ) -> ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) ) |
| 11 |
1
|
fveq1i |
|- ( P ` 2 ) = ( <" A B C D "> ` 2 ) |
| 12 |
|
s4fv2 |
|- ( C e. V -> ( <" A B C D "> ` 2 ) = C ) |
| 13 |
11 12
|
eqtrid |
|- ( C e. V -> ( P ` 2 ) = C ) |
| 14 |
1
|
fveq1i |
|- ( P ` 3 ) = ( <" A B C D "> ` 3 ) |
| 15 |
|
s4fv3 |
|- ( D e. V -> ( <" A B C D "> ` 3 ) = D ) |
| 16 |
14 15
|
eqtrid |
|- ( D e. V -> ( P ` 3 ) = D ) |
| 17 |
13 16
|
anim12i |
|- ( ( C e. V /\ D e. V ) -> ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) |
| 18 |
10 17
|
anim12i |
|- ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) ) |
| 19 |
3 18
|
syl |
|- ( ph -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) ) |