Metamath Proof Explorer


Theorem 3wlkdlem3

Description: Lemma 3 for 3wlkd . (Contributed by Alexander van der Vekens, 10-Nov-2017) (Revised by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p 𝑃 = ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩
3wlkd.f 𝐹 = ⟨“ 𝐽 𝐾 𝐿 ”⟩
3wlkd.s ( 𝜑 → ( ( 𝐴𝑉𝐵𝑉 ) ∧ ( 𝐶𝑉𝐷𝑉 ) ) )
Assertion 3wlkdlem3 ( 𝜑 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 3wlkd.p 𝑃 = ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩
2 3wlkd.f 𝐹 = ⟨“ 𝐽 𝐾 𝐿 ”⟩
3 3wlkd.s ( 𝜑 → ( ( 𝐴𝑉𝐵𝑉 ) ∧ ( 𝐶𝑉𝐷𝑉 ) ) )
4 1 fveq1i ( 𝑃 ‘ 0 ) = ( ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ‘ 0 )
5 s4fv0 ( 𝐴𝑉 → ( ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ‘ 0 ) = 𝐴 )
6 4 5 eqtrid ( 𝐴𝑉 → ( 𝑃 ‘ 0 ) = 𝐴 )
7 1 fveq1i ( 𝑃 ‘ 1 ) = ( ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ‘ 1 )
8 s4fv1 ( 𝐵𝑉 → ( ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ‘ 1 ) = 𝐵 )
9 7 8 eqtrid ( 𝐵𝑉 → ( 𝑃 ‘ 1 ) = 𝐵 )
10 6 9 anim12i ( ( 𝐴𝑉𝐵𝑉 ) → ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) )
11 1 fveq1i ( 𝑃 ‘ 2 ) = ( ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ‘ 2 )
12 s4fv2 ( 𝐶𝑉 → ( ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ‘ 2 ) = 𝐶 )
13 11 12 eqtrid ( 𝐶𝑉 → ( 𝑃 ‘ 2 ) = 𝐶 )
14 1 fveq1i ( 𝑃 ‘ 3 ) = ( ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ‘ 3 )
15 s4fv3 ( 𝐷𝑉 → ( ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ‘ 3 ) = 𝐷 )
16 14 15 eqtrid ( 𝐷𝑉 → ( 𝑃 ‘ 3 ) = 𝐷 )
17 13 16 anim12i ( ( 𝐶𝑉𝐷𝑉 ) → ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) )
18 10 17 anim12i ( ( ( 𝐴𝑉𝐵𝑉 ) ∧ ( 𝐶𝑉𝐷𝑉 ) ) → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) )
19 3 18 syl ( 𝜑 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) )