Metamath Proof Explorer


Theorem 3wlkdlem3

Description: Lemma 3 for 3wlkd . (Contributed by Alexander van der Vekens, 10-Nov-2017) (Revised by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p P=⟨“ABCD”⟩
3wlkd.f F=⟨“JKL”⟩
3wlkd.s φAVBVCVDV
Assertion 3wlkdlem3 φP0=AP1=BP2=CP3=D

Proof

Step Hyp Ref Expression
1 3wlkd.p P=⟨“ABCD”⟩
2 3wlkd.f F=⟨“JKL”⟩
3 3wlkd.s φAVBVCVDV
4 1 fveq1i P0=⟨“ABCD”⟩0
5 s4fv0 AV⟨“ABCD”⟩0=A
6 4 5 eqtrid AVP0=A
7 1 fveq1i P1=⟨“ABCD”⟩1
8 s4fv1 BV⟨“ABCD”⟩1=B
9 7 8 eqtrid BVP1=B
10 6 9 anim12i AVBVP0=AP1=B
11 1 fveq1i P2=⟨“ABCD”⟩2
12 s4fv2 CV⟨“ABCD”⟩2=C
13 11 12 eqtrid CVP2=C
14 1 fveq1i P3=⟨“ABCD”⟩3
15 s4fv3 DV⟨“ABCD”⟩3=D
16 14 15 eqtrid DVP3=D
17 13 16 anim12i CVDVP2=CP3=D
18 10 17 anim12i AVBVCVDVP0=AP1=BP2=CP3=D
19 3 18 syl φP0=AP1=BP2=CP3=D