| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3wlkd.p |
|- P = <" A B C D "> |
| 2 |
|
3wlkd.f |
|- F = <" J K L "> |
| 3 |
|
3wlkd.s |
|- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
| 4 |
1 2 3
|
3wlkdlem3 |
|- ( ph -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) ) |
| 5 |
|
simpl |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( P ` 0 ) = A ) |
| 6 |
5
|
eleq1d |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( ( P ` 0 ) e. V <-> A e. V ) ) |
| 7 |
|
simpr |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( P ` 1 ) = B ) |
| 8 |
7
|
eleq1d |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( ( P ` 1 ) e. V <-> B e. V ) ) |
| 9 |
6 8
|
anbi12d |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V ) <-> ( A e. V /\ B e. V ) ) ) |
| 10 |
9
|
biimparc |
|- ( ( ( A e. V /\ B e. V ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) ) -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V ) ) |
| 11 |
|
c0ex |
|- 0 e. _V |
| 12 |
|
1ex |
|- 1 e. _V |
| 13 |
11 12
|
pm3.2i |
|- ( 0 e. _V /\ 1 e. _V ) |
| 14 |
|
fveq2 |
|- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
| 15 |
14
|
eleq1d |
|- ( k = 0 -> ( ( P ` k ) e. V <-> ( P ` 0 ) e. V ) ) |
| 16 |
|
fveq2 |
|- ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) |
| 17 |
16
|
eleq1d |
|- ( k = 1 -> ( ( P ` k ) e. V <-> ( P ` 1 ) e. V ) ) |
| 18 |
15 17
|
ralprg |
|- ( ( 0 e. _V /\ 1 e. _V ) -> ( A. k e. { 0 , 1 } ( P ` k ) e. V <-> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V ) ) ) |
| 19 |
13 18
|
mp1i |
|- ( ( ( A e. V /\ B e. V ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) ) -> ( A. k e. { 0 , 1 } ( P ` k ) e. V <-> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V ) ) ) |
| 20 |
10 19
|
mpbird |
|- ( ( ( A e. V /\ B e. V ) /\ ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) ) -> A. k e. { 0 , 1 } ( P ` k ) e. V ) |
| 21 |
20
|
ex |
|- ( ( A e. V /\ B e. V ) -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> A. k e. { 0 , 1 } ( P ` k ) e. V ) ) |
| 22 |
|
simpl |
|- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( P ` 2 ) = C ) |
| 23 |
22
|
eleq1d |
|- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( ( P ` 2 ) e. V <-> C e. V ) ) |
| 24 |
|
simpr |
|- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( P ` 3 ) = D ) |
| 25 |
24
|
eleq1d |
|- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( ( P ` 3 ) e. V <-> D e. V ) ) |
| 26 |
23 25
|
anbi12d |
|- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( ( ( P ` 2 ) e. V /\ ( P ` 3 ) e. V ) <-> ( C e. V /\ D e. V ) ) ) |
| 27 |
26
|
biimparc |
|- ( ( ( C e. V /\ D e. V ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( P ` 2 ) e. V /\ ( P ` 3 ) e. V ) ) |
| 28 |
|
2ex |
|- 2 e. _V |
| 29 |
|
3ex |
|- 3 e. _V |
| 30 |
28 29
|
pm3.2i |
|- ( 2 e. _V /\ 3 e. _V ) |
| 31 |
|
fveq2 |
|- ( k = 2 -> ( P ` k ) = ( P ` 2 ) ) |
| 32 |
31
|
eleq1d |
|- ( k = 2 -> ( ( P ` k ) e. V <-> ( P ` 2 ) e. V ) ) |
| 33 |
|
fveq2 |
|- ( k = 3 -> ( P ` k ) = ( P ` 3 ) ) |
| 34 |
33
|
eleq1d |
|- ( k = 3 -> ( ( P ` k ) e. V <-> ( P ` 3 ) e. V ) ) |
| 35 |
32 34
|
ralprg |
|- ( ( 2 e. _V /\ 3 e. _V ) -> ( A. k e. { 2 , 3 } ( P ` k ) e. V <-> ( ( P ` 2 ) e. V /\ ( P ` 3 ) e. V ) ) ) |
| 36 |
30 35
|
mp1i |
|- ( ( ( C e. V /\ D e. V ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( A. k e. { 2 , 3 } ( P ` k ) e. V <-> ( ( P ` 2 ) e. V /\ ( P ` 3 ) e. V ) ) ) |
| 37 |
27 36
|
mpbird |
|- ( ( ( C e. V /\ D e. V ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> A. k e. { 2 , 3 } ( P ` k ) e. V ) |
| 38 |
37
|
ex |
|- ( ( C e. V /\ D e. V ) -> ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> A. k e. { 2 , 3 } ( P ` k ) e. V ) ) |
| 39 |
21 38
|
im2anan9 |
|- ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( A. k e. { 0 , 1 } ( P ` k ) e. V /\ A. k e. { 2 , 3 } ( P ` k ) e. V ) ) ) |
| 40 |
3 4 39
|
sylc |
|- ( ph -> ( A. k e. { 0 , 1 } ( P ` k ) e. V /\ A. k e. { 2 , 3 } ( P ` k ) e. V ) ) |
| 41 |
2
|
fveq2i |
|- ( # ` F ) = ( # ` <" J K L "> ) |
| 42 |
|
s3len |
|- ( # ` <" J K L "> ) = 3 |
| 43 |
41 42
|
eqtri |
|- ( # ` F ) = 3 |
| 44 |
43
|
oveq2i |
|- ( 0 ... ( # ` F ) ) = ( 0 ... 3 ) |
| 45 |
|
fz0to3un2pr |
|- ( 0 ... 3 ) = ( { 0 , 1 } u. { 2 , 3 } ) |
| 46 |
44 45
|
eqtri |
|- ( 0 ... ( # ` F ) ) = ( { 0 , 1 } u. { 2 , 3 } ) |
| 47 |
46
|
raleqi |
|- ( A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V <-> A. k e. ( { 0 , 1 } u. { 2 , 3 } ) ( P ` k ) e. V ) |
| 48 |
|
ralunb |
|- ( A. k e. ( { 0 , 1 } u. { 2 , 3 } ) ( P ` k ) e. V <-> ( A. k e. { 0 , 1 } ( P ` k ) e. V /\ A. k e. { 2 , 3 } ( P ` k ) e. V ) ) |
| 49 |
47 48
|
bitri |
|- ( A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V <-> ( A. k e. { 0 , 1 } ( P ` k ) e. V /\ A. k e. { 2 , 3 } ( P ` k ) e. V ) ) |
| 50 |
40 49
|
sylibr |
|- ( ph -> A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) |