| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3wlkd.p |
|- P = <" A B C D "> |
| 2 |
|
3wlkd.f |
|- F = <" J K L "> |
| 3 |
|
3wlkd.s |
|- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
| 4 |
|
3wlkd.n |
|- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
| 5 |
|
simpl |
|- ( ( A =/= B /\ A =/= C ) -> A =/= B ) |
| 6 |
|
simpl |
|- ( ( B =/= C /\ B =/= D ) -> B =/= C ) |
| 7 |
|
id |
|- ( C =/= D -> C =/= D ) |
| 8 |
5 6 7
|
3anim123i |
|- ( ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) -> ( A =/= B /\ B =/= C /\ C =/= D ) ) |
| 9 |
4 8
|
syl |
|- ( ph -> ( A =/= B /\ B =/= C /\ C =/= D ) ) |
| 10 |
1 2 3
|
3wlkdlem3 |
|- ( ph -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) ) |
| 11 |
|
simpl |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( P ` 0 ) = A ) |
| 12 |
|
simpr |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( P ` 1 ) = B ) |
| 13 |
11 12
|
neeq12d |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( ( P ` 0 ) =/= ( P ` 1 ) <-> A =/= B ) ) |
| 14 |
13
|
adantr |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( P ` 0 ) =/= ( P ` 1 ) <-> A =/= B ) ) |
| 15 |
12
|
adantr |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( P ` 1 ) = B ) |
| 16 |
|
simpl |
|- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( P ` 2 ) = C ) |
| 17 |
16
|
adantl |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( P ` 2 ) = C ) |
| 18 |
15 17
|
neeq12d |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( P ` 1 ) =/= ( P ` 2 ) <-> B =/= C ) ) |
| 19 |
|
simpr |
|- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( P ` 3 ) = D ) |
| 20 |
16 19
|
neeq12d |
|- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( ( P ` 2 ) =/= ( P ` 3 ) <-> C =/= D ) ) |
| 21 |
20
|
adantl |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( P ` 2 ) =/= ( P ` 3 ) <-> C =/= D ) ) |
| 22 |
14 18 21
|
3anbi123d |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) <-> ( A =/= B /\ B =/= C /\ C =/= D ) ) ) |
| 23 |
10 22
|
syl |
|- ( ph -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) <-> ( A =/= B /\ B =/= C /\ C =/= D ) ) ) |
| 24 |
9 23
|
mpbird |
|- ( ph -> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) |
| 25 |
1 2
|
3wlkdlem2 |
|- ( 0 ..^ ( # ` F ) ) = { 0 , 1 , 2 } |
| 26 |
25
|
raleqi |
|- ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> A. k e. { 0 , 1 , 2 } ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
| 27 |
|
c0ex |
|- 0 e. _V |
| 28 |
|
1ex |
|- 1 e. _V |
| 29 |
|
2ex |
|- 2 e. _V |
| 30 |
|
fveq2 |
|- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
| 31 |
|
fv0p1e1 |
|- ( k = 0 -> ( P ` ( k + 1 ) ) = ( P ` 1 ) ) |
| 32 |
30 31
|
neeq12d |
|- ( k = 0 -> ( ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 33 |
|
fveq2 |
|- ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) |
| 34 |
|
oveq1 |
|- ( k = 1 -> ( k + 1 ) = ( 1 + 1 ) ) |
| 35 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 36 |
34 35
|
eqtrdi |
|- ( k = 1 -> ( k + 1 ) = 2 ) |
| 37 |
36
|
fveq2d |
|- ( k = 1 -> ( P ` ( k + 1 ) ) = ( P ` 2 ) ) |
| 38 |
33 37
|
neeq12d |
|- ( k = 1 -> ( ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( P ` 1 ) =/= ( P ` 2 ) ) ) |
| 39 |
|
fveq2 |
|- ( k = 2 -> ( P ` k ) = ( P ` 2 ) ) |
| 40 |
|
oveq1 |
|- ( k = 2 -> ( k + 1 ) = ( 2 + 1 ) ) |
| 41 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 42 |
40 41
|
eqtrdi |
|- ( k = 2 -> ( k + 1 ) = 3 ) |
| 43 |
42
|
fveq2d |
|- ( k = 2 -> ( P ` ( k + 1 ) ) = ( P ` 3 ) ) |
| 44 |
39 43
|
neeq12d |
|- ( k = 2 -> ( ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( P ` 2 ) =/= ( P ` 3 ) ) ) |
| 45 |
27 28 29 32 38 44
|
raltp |
|- ( A. k e. { 0 , 1 , 2 } ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) |
| 46 |
26 45
|
bitri |
|- ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) |
| 47 |
24 46
|
sylibr |
|- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |