Description: Lemma 2 for 3wlkd . (Contributed by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3wlkd.p | |- P = <" A B C D "> |
|
| 3wlkd.f | |- F = <" J K L "> |
||
| Assertion | 3wlkdlem2 | |- ( 0 ..^ ( # ` F ) ) = { 0 , 1 , 2 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | |- P = <" A B C D "> |
|
| 2 | 3wlkd.f | |- F = <" J K L "> |
|
| 3 | 2 | fveq2i | |- ( # ` F ) = ( # ` <" J K L "> ) |
| 4 | s3len | |- ( # ` <" J K L "> ) = 3 |
|
| 5 | 3 4 | eqtri | |- ( # ` F ) = 3 |
| 6 | 5 | oveq2i | |- ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 3 ) |
| 7 | fzo0to3tp | |- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
|
| 8 | 6 7 | eqtri | |- ( 0 ..^ ( # ` F ) ) = { 0 , 1 , 2 } |