| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3wlkd.p |
|- P = <" A B C D "> |
| 2 |
|
3wlkd.f |
|- F = <" J K L "> |
| 3 |
|
3wlkd.s |
|- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
| 4 |
|
3wlkd.n |
|- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
| 5 |
|
3wlkd.e |
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) |
| 6 |
|
3wlkd.v |
|- V = ( Vtx ` G ) |
| 7 |
|
3wlkd.i |
|- I = ( iEdg ` G ) |
| 8 |
|
3trld.n |
|- ( ph -> ( J =/= K /\ J =/= L /\ K =/= L ) ) |
| 9 |
|
3spthd.n |
|- ( ph -> A =/= D ) |
| 10 |
1 2 3 4 5 6 7 8
|
3trlond |
|- ( ph -> F ( A ( TrailsOn ` G ) D ) P ) |
| 11 |
1 2 3 4 5 6 7 8 9
|
3spthd |
|- ( ph -> F ( SPaths ` G ) P ) |
| 12 |
3
|
simplld |
|- ( ph -> A e. V ) |
| 13 |
3
|
simprrd |
|- ( ph -> D e. V ) |
| 14 |
|
s3cli |
|- <" J K L "> e. Word _V |
| 15 |
2 14
|
eqeltri |
|- F e. Word _V |
| 16 |
|
s4cli |
|- <" A B C D "> e. Word _V |
| 17 |
1 16
|
eqeltri |
|- P e. Word _V |
| 18 |
15 17
|
pm3.2i |
|- ( F e. Word _V /\ P e. Word _V ) |
| 19 |
18
|
a1i |
|- ( ph -> ( F e. Word _V /\ P e. Word _V ) ) |
| 20 |
6
|
isspthson |
|- ( ( ( A e. V /\ D e. V ) /\ ( F e. Word _V /\ P e. Word _V ) ) -> ( F ( A ( SPathsOn ` G ) D ) P <-> ( F ( A ( TrailsOn ` G ) D ) P /\ F ( SPaths ` G ) P ) ) ) |
| 21 |
12 13 19 20
|
syl21anc |
|- ( ph -> ( F ( A ( SPathsOn ` G ) D ) P <-> ( F ( A ( TrailsOn ` G ) D ) P /\ F ( SPaths ` G ) P ) ) ) |
| 22 |
10 11 21
|
mpbir2and |
|- ( ph -> F ( A ( SPathsOn ` G ) D ) P ) |