| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3wlkd.p |
|- P = <" A B C D "> |
| 2 |
|
3wlkd.f |
|- F = <" J K L "> |
| 3 |
|
3wlkd.s |
|- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
| 4 |
|
3wlkd.n |
|- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
| 5 |
|
3wlkd.e |
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) |
| 6 |
|
3wlkd.v |
|- V = ( Vtx ` G ) |
| 7 |
|
3wlkd.i |
|- I = ( iEdg ` G ) |
| 8 |
|
3trld.n |
|- ( ph -> ( J =/= K /\ J =/= L /\ K =/= L ) ) |
| 9 |
|
3cycld.e |
|- ( ph -> A = D ) |
| 10 |
1 2 3 4 5 6 7 8
|
3pthd |
|- ( ph -> F ( Paths ` G ) P ) |
| 11 |
1
|
fveq1i |
|- ( P ` 0 ) = ( <" A B C D "> ` 0 ) |
| 12 |
|
s4fv0 |
|- ( A e. V -> ( <" A B C D "> ` 0 ) = A ) |
| 13 |
11 12
|
eqtrid |
|- ( A e. V -> ( P ` 0 ) = A ) |
| 14 |
13
|
ad3antrrr |
|- ( ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) /\ A = D ) -> ( P ` 0 ) = A ) |
| 15 |
|
simpr |
|- ( ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) /\ A = D ) -> A = D ) |
| 16 |
2
|
fveq2i |
|- ( # ` F ) = ( # ` <" J K L "> ) |
| 17 |
|
s3len |
|- ( # ` <" J K L "> ) = 3 |
| 18 |
16 17
|
eqtri |
|- ( # ` F ) = 3 |
| 19 |
1 18
|
fveq12i |
|- ( P ` ( # ` F ) ) = ( <" A B C D "> ` 3 ) |
| 20 |
|
s4fv3 |
|- ( D e. V -> ( <" A B C D "> ` 3 ) = D ) |
| 21 |
19 20
|
eqtr2id |
|- ( D e. V -> D = ( P ` ( # ` F ) ) ) |
| 22 |
21
|
adantl |
|- ( ( C e. V /\ D e. V ) -> D = ( P ` ( # ` F ) ) ) |
| 23 |
22
|
ad2antlr |
|- ( ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) /\ A = D ) -> D = ( P ` ( # ` F ) ) ) |
| 24 |
14 15 23
|
3eqtrd |
|- ( ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) /\ A = D ) -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) |
| 25 |
3 9 24
|
syl2anc |
|- ( ph -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) |
| 26 |
|
iscycl |
|- ( F ( Cycles ` G ) P <-> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 27 |
10 25 26
|
sylanbrc |
|- ( ph -> F ( Cycles ` G ) P ) |