Metamath Proof Explorer


Theorem 60gcd6e6

Description: The gcd of 60 and 6 is 6. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Assertion 60gcd6e6
|- ( ; 6 0 gcd 6 ) = 6

Proof

Step Hyp Ref Expression
1 6nn
 |-  6 e. NN
2 1 decnncl2
 |-  ; 6 0 e. NN
3 1 2 gcdcomnni
 |-  ( 6 gcd ; 6 0 ) = ( ; 6 0 gcd 6 )
4 1 nnnn0i
 |-  6 e. NN0
5 1nn0
 |-  1 e. NN0
6 0nn0
 |-  0 e. NN0
7 eqid
 |-  ; 1 0 = ; 1 0
8 6cn
 |-  6 e. CC
9 8 mulid2i
 |-  ( 1 x. 6 ) = 6
10 8 mul02i
 |-  ( 0 x. 6 ) = 0
11 4 5 6 7 9 10 decmul1
 |-  ( ; 1 0 x. 6 ) = ; 6 0
12 10nn
 |-  ; 1 0 e. NN
13 12 1 mulcomnni
 |-  ( ; 1 0 x. 6 ) = ( 6 x. ; 1 0 )
14 11 13 eqtr3i
 |-  ; 6 0 = ( 6 x. ; 1 0 )
15 14 oveq2i
 |-  ( 6 gcd ; 6 0 ) = ( 6 gcd ( 6 x. ; 1 0 ) )
16 1 12 gcdmultiplei
 |-  ( 6 gcd ( 6 x. ; 1 0 ) ) = 6
17 15 16 eqtri
 |-  ( 6 gcd ; 6 0 ) = 6
18 3 17 eqtr3i
 |-  ( ; 6 0 gcd 6 ) = 6