Step |
Hyp |
Ref |
Expression |
1 |
|
7nn |
|- 7 e. NN |
2 |
|
6nn |
|- 6 e. NN |
3 |
2
|
decnncl2 |
|- ; 6 0 e. NN |
4 |
1 3
|
gcdcomnni |
|- ( 7 gcd ; 6 0 ) = ( ; 6 0 gcd 7 ) |
5 |
|
1nn0 |
|- 1 e. NN0 |
6 |
|
1nn |
|- 1 e. NN |
7 |
5 6
|
decnncl |
|- ; 1 1 e. NN |
8 |
1
|
nnzi |
|- 7 e. ZZ |
9 |
1 7 8
|
gcdaddmzz2nni |
|- ( 7 gcd ; 1 1 ) = ( 7 gcd ( ; 1 1 + ( 7 x. 7 ) ) ) |
10 |
|
7t7e49 |
|- ( 7 x. 7 ) = ; 4 9 |
11 |
10
|
oveq2i |
|- ( ; 1 1 + ( 7 x. 7 ) ) = ( ; 1 1 + ; 4 9 ) |
12 |
|
4nn0 |
|- 4 e. NN0 |
13 |
|
9nn0 |
|- 9 e. NN0 |
14 |
|
eqid |
|- ; 1 1 = ; 1 1 |
15 |
|
eqid |
|- ; 4 9 = ; 4 9 |
16 |
|
4cn |
|- 4 e. CC |
17 |
|
ax-1cn |
|- 1 e. CC |
18 |
|
4p1e5 |
|- ( 4 + 1 ) = 5 |
19 |
16 17 18
|
addcomli |
|- ( 1 + 4 ) = 5 |
20 |
19
|
oveq1i |
|- ( ( 1 + 4 ) + 1 ) = ( 5 + 1 ) |
21 |
|
5p1e6 |
|- ( 5 + 1 ) = 6 |
22 |
20 21
|
eqtri |
|- ( ( 1 + 4 ) + 1 ) = 6 |
23 |
|
9cn |
|- 9 e. CC |
24 |
|
9p1e10 |
|- ( 9 + 1 ) = ; 1 0 |
25 |
23 17 24
|
addcomli |
|- ( 1 + 9 ) = ; 1 0 |
26 |
5 5 12 13 14 15 22 25
|
decaddc2 |
|- ( ; 1 1 + ; 4 9 ) = ; 6 0 |
27 |
11 26
|
eqtri |
|- ( ; 1 1 + ( 7 x. 7 ) ) = ; 6 0 |
28 |
27
|
oveq2i |
|- ( 7 gcd ( ; 1 1 + ( 7 x. 7 ) ) ) = ( 7 gcd ; 6 0 ) |
29 |
9 28
|
eqtri |
|- ( 7 gcd ; 1 1 ) = ( 7 gcd ; 6 0 ) |
30 |
|
7re |
|- 7 e. RR |
31 |
1
|
nnnn0i |
|- 7 e. NN0 |
32 |
31
|
dec0h |
|- 7 = ; 0 7 |
33 |
|
0nn0 |
|- 0 e. NN0 |
34 |
|
7lt9 |
|- 7 < 9 |
35 |
|
9re |
|- 9 e. RR |
36 |
30 35
|
pm3.2i |
|- ( 7 e. RR /\ 9 e. RR ) |
37 |
|
ltle |
|- ( ( 7 e. RR /\ 9 e. RR ) -> ( 7 < 9 -> 7 <_ 9 ) ) |
38 |
36 37
|
ax-mp |
|- ( 7 < 9 -> 7 <_ 9 ) |
39 |
34 38
|
ax-mp |
|- 7 <_ 9 |
40 |
|
0lt1 |
|- 0 < 1 |
41 |
33 5 31 5 39 40
|
declth |
|- ; 0 7 < ; 1 1 |
42 |
32 41
|
eqbrtri |
|- 7 < ; 1 1 |
43 |
|
ltne |
|- ( ( 7 e. RR /\ 7 < ; 1 1 ) -> ; 1 1 =/= 7 ) |
44 |
30 42 43
|
mp2an |
|- ; 1 1 =/= 7 |
45 |
|
necom |
|- ( 7 =/= ; 1 1 <-> ; 1 1 =/= 7 ) |
46 |
44 45
|
mpbir |
|- 7 =/= ; 1 1 |
47 |
|
7prm |
|- 7 e. Prime |
48 |
|
11prm |
|- ; 1 1 e. Prime |
49 |
|
prmrp |
|- ( ( 7 e. Prime /\ ; 1 1 e. Prime ) -> ( ( 7 gcd ; 1 1 ) = 1 <-> 7 =/= ; 1 1 ) ) |
50 |
47 48 49
|
mp2an |
|- ( ( 7 gcd ; 1 1 ) = 1 <-> 7 =/= ; 1 1 ) |
51 |
46 50
|
mpbir |
|- ( 7 gcd ; 1 1 ) = 1 |
52 |
29 51
|
eqtr3i |
|- ( 7 gcd ; 6 0 ) = 1 |
53 |
4 52
|
eqtr3i |
|- ( ; 6 0 gcd 7 ) = 1 |