Metamath Proof Explorer
Description: Comparing two decimal integers (unequal higher places). (Contributed by AV, 8-Sep-2021)
|
|
Ref |
Expression |
|
Hypotheses |
declt.a |
|- A e. NN0 |
|
|
declt.b |
|- B e. NN0 |
|
|
declth.c |
|- C e. NN0 |
|
|
declth.d |
|- D e. NN0 |
|
|
declth.e |
|- C <_ 9 |
|
|
declth.l |
|- A < B |
|
Assertion |
declth |
|- ; A C < ; B D |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
declt.a |
|- A e. NN0 |
| 2 |
|
declt.b |
|- B e. NN0 |
| 3 |
|
declth.c |
|- C e. NN0 |
| 4 |
|
declth.d |
|- D e. NN0 |
| 5 |
|
declth.e |
|- C <_ 9 |
| 6 |
|
declth.l |
|- A < B |
| 7 |
3 5
|
le9lt10 |
|- C < ; 1 0 |
| 8 |
1 2 3 4 7 6
|
decltc |
|- ; A C < ; B D |