Metamath Proof Explorer


Theorem 60gcd7e1

Description: The gcd of 60 and 7 is 1. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Assertion 60gcd7e1 60 gcd 7 = 1

Proof

Step Hyp Ref Expression
1 7nn 7
2 6nn 6
3 2 decnncl2 60
4 1 3 gcdcomnni 7 gcd 60 = 60 gcd 7
5 1nn0 1 0
6 1nn 1
7 5 6 decnncl 11
8 1 nnzi 7
9 1 7 8 gcdaddmzz2nni 7 gcd 11 = 7 gcd 11 + 7 7
10 7t7e49 7 7 = 49
11 10 oveq2i 11 + 7 7 = 11 + 49
12 4nn0 4 0
13 9nn0 9 0
14 eqid 11 = 11
15 eqid 49 = 49
16 4cn 4
17 ax-1cn 1
18 4p1e5 4 + 1 = 5
19 16 17 18 addcomli 1 + 4 = 5
20 19 oveq1i 1 + 4 + 1 = 5 + 1
21 5p1e6 5 + 1 = 6
22 20 21 eqtri 1 + 4 + 1 = 6
23 9cn 9
24 9p1e10 9 + 1 = 10
25 23 17 24 addcomli 1 + 9 = 10
26 5 5 12 13 14 15 22 25 decaddc2 11 + 49 = 60
27 11 26 eqtri 11 + 7 7 = 60
28 27 oveq2i 7 gcd 11 + 7 7 = 7 gcd 60
29 9 28 eqtri 7 gcd 11 = 7 gcd 60
30 7re 7
31 1 nnnn0i 7 0
32 31 dec0h 7 = 07
33 0nn0 0 0
34 7lt9 7 < 9
35 9re 9
36 30 35 pm3.2i 7 9
37 ltle 7 9 7 < 9 7 9
38 36 37 ax-mp 7 < 9 7 9
39 34 38 ax-mp 7 9
40 0lt1 0 < 1
41 33 5 31 5 39 40 declth 07 < 11
42 32 41 eqbrtri 7 < 11
43 ltne 7 7 < 11 11 7
44 30 42 43 mp2an 11 7
45 necom 7 11 11 7
46 44 45 mpbir 7 11
47 7prm 7
48 11prm 11
49 prmrp 7 11 7 gcd 11 = 1 7 11
50 47 48 49 mp2an 7 gcd 11 = 1 7 11
51 46 50 mpbir 7 gcd 11 = 1
52 29 51 eqtr3i 7 gcd 60 = 1
53 4 52 eqtr3i 60 gcd 7 = 1