Metamath Proof Explorer


Theorem 11prm

Description: 11 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 11prm 11

Proof

Step Hyp Ref Expression
1 1nn0 10
2 1nn 1
3 1 2 decnncl 11
4 1lt10 1<10
5 2 1 1 4 declti 1<11
6 0nn0 00
7 2cn 2
8 7 mul02i 02=0
9 1e0p1 1=0+1
10 1 6 8 9 dec2dvds ¬211
11 3nn 3
12 3nn0 30
13 2nn 2
14 3t3e9 33=9
15 14 oveq1i 33+2=9+2
16 9p2e11 9+2=11
17 15 16 eqtri 33+2=11
18 2lt3 2<3
19 11 12 13 17 18 ndvdsi ¬311
20 2nn0 20
21 5nn0 50
22 1lt2 1<2
23 1 20 1 21 4 22 decltc 11<25
24 3 5 10 19 23 prmlem1 11