Metamath Proof Explorer


Theorem 13prm

Description: 13 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 13prm 13

Proof

Step Hyp Ref Expression
1 1nn0 10
2 3nn 3
3 1 2 decnncl 13
4 1nn 1
5 3nn0 30
6 1lt10 1<10
7 4 5 1 6 declti 1<13
8 2cn 2
9 8 mullidi 12=2
10 df-3 3=2+1
11 1 1 9 10 dec2dvds ¬213
12 4nn0 40
13 2nn0 20
14 2p1e3 2+1=3
15 4cn 4
16 3cn 3
17 4t3e12 43=12
18 15 16 17 mulcomli 34=12
19 1 13 14 18 decsuc 34+1=13
20 1lt3 1<3
21 2 12 4 19 20 ndvdsi ¬313
22 5nn0 50
23 3lt10 3<10
24 1lt2 1<2
25 1 13 5 22 23 24 decltc 13<25
26 3 7 11 21 25 prmlem1 13