Metamath Proof Explorer


Theorem gcdaddmzz2nni

Description: Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Hypotheses gcdaddmzz2nni.1 M
gcdaddmzz2nni.2 N
gcdaddmzz2nni.3 K
Assertion gcdaddmzz2nni M gcd N = M gcd N + K M

Proof

Step Hyp Ref Expression
1 gcdaddmzz2nni.1 M
2 gcdaddmzz2nni.2 N
3 gcdaddmzz2nni.3 K
4 1 nnzi M
5 2 nnzi N
6 3 4 5 3pm3.2i K M N
7 gcdaddm K M N M gcd N = M gcd N + K M
8 6 7 ax-mp M gcd N = M gcd N + K M