Metamath Proof Explorer


Theorem gcdaddmzz2nni

Description: Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Hypotheses gcdaddmzz2nni.1 𝑀 ∈ ℕ
gcdaddmzz2nni.2 𝑁 ∈ ℕ
gcdaddmzz2nni.3 𝐾 ∈ ℤ
Assertion gcdaddmzz2nni ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( 𝑁 + ( 𝐾 · 𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 gcdaddmzz2nni.1 𝑀 ∈ ℕ
2 gcdaddmzz2nni.2 𝑁 ∈ ℕ
3 gcdaddmzz2nni.3 𝐾 ∈ ℤ
4 1 nnzi 𝑀 ∈ ℤ
5 2 nnzi 𝑁 ∈ ℤ
6 3 4 5 3pm3.2i ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ )
7 gcdaddm ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( 𝑁 + ( 𝐾 · 𝑀 ) ) ) )
8 6 7 ax-mp ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd ( 𝑁 + ( 𝐾 · 𝑀 ) ) )